Compute the 'elbow' for a curve automatically and mathematically

空扰寡人 提交于 2019-12-02 16:46:40

You might want to look for the point with the maximum absolute second derivative which, for a set of discrete points x[i] as you have there, can be approximated with a central difference:

secondDerivative[i] = x[i+1] + x[i-1] - 2 * x[i]

As noted above, what you really want is the point with maximum curvature, but the second derivative will do, and this central difference is a good proxy for the second derivative.

I created a Python package that attempts to implement the Kneedle algorithm.

To recreate the function above and detect the point of maximum curvature:

x = range(1,21)
y = [0.065, 0.039, 0.030, 0.024, 0.023, 0.022, 0.019, 0.0185, 0.0187,
     0.016, 0.015, 0.016, 0.0135, 0.0130, 0.0125, 0.0120, 0.0117, 0.0115, 0.0112, 0.013]

kn = KneeLocator(
    x,
    y,
    curve='convex',
    direction='decreasing',
    interp_method='interp1d',
)

print(kn.knee)
7
import matplotlib.pyplot as plt
plt.xlabel('x')
plt.ylabel('f(x)')
plt.xticks(range(1,21))
plt.plot(x, y, 'bx-')
plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')

update
Kneed has an improved spline fitting method for handling local minima, use interp_method='polynomial'.

kn = KneeLocator(
    x,
    y,
    curve='convex',
    direction='decreasing',
    interp_method='polynomial',
)

print(kn.knee)
4

And the new plot:

plt.xlabel('x')
plt.ylabel('f(x)')
plt.xticks(range(1,21))
plt.plot(x, y, 'bx-')
plt.vlines(kn.knee, plt.ylim()[0], plt.ylim()[1], linestyles='dashed')

Functions like this one are usually called L-curves for their shapes. They appear when solving ill-posed problems through regularization.

The 'elbow'-point is the point on the curve with the maximum absolute second derivative.

What you really want is the point with maximum curvature. When the slope is much smaller than 1, this can be approximated by the second derivative (as @ebo points out), but this is not always the case.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!