Training a Neural Network with Reinforcement learning

穿精又带淫゛_ 提交于 2019-12-02 13:53:41
Kiril

There are some research papers on the topic:

And some code:

Those are just some of the top google search results on the topic. The first couple of papers look like they're pretty good, although I haven't read them personally. I think you'll find even more information on neural networks with reinforcement learning if you do a quick search on Google Scholar.

If the output that lead to a reward r is backpropagated into the network r times, you will reinforce the network proportionally to the reward. This is not directly applicable to negative rewards, but I can think of two solutions that will produce different effects:

1) If you have a set of rewards in a range rmin-rmax, rescale them to 0-(rmax-rmin) so that they are all non-negative. The bigger the reward, the stronger the reinforcement that is created.

2) For a negative reward -r, backpropagate a random output r times, as long as it's different from the one that lead to the negative reward. This will not only reinforce desirable outputs, but also diffuses or avoids bad outputs.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!