Detect face then autocrop pictures

纵然是瞬间 提交于 2019-12-02 13:50:31

I have managed to grab bits of code from various sources and stitch this together. It is still a work in progress. Also, do you have any example images?

'''
Sources:
http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
http://www.lucaamore.com/?p=638
'''

#Python 2.7.2
#Opencv 2.4.2
#PIL 1.1.7

import cv
import Image

def DetectFace(image, faceCascade):
    #modified from: http://www.lucaamore.com/?p=638

    min_size = (20,20)
    image_scale = 1
    haar_scale = 1.1
    min_neighbors = 3
    haar_flags = 0

    # Allocate the temporary images
    smallImage = cv.CreateImage(
            (
                cv.Round(image.width / image_scale),
                cv.Round(image.height / image_scale)
            ), 8 ,1)

    # Scale input image for faster processing
    cv.Resize(image, smallImage, cv.CV_INTER_LINEAR)

    # Equalize the histogram
    cv.EqualizeHist(smallImage, smallImage)

    # Detect the faces
    faces = cv.HaarDetectObjects(
            smallImage, faceCascade, cv.CreateMemStorage(0),
            haar_scale, min_neighbors, haar_flags, min_size
        )

    # If faces are found
    if faces:
        for ((x, y, w, h), n) in faces:
            # the input to cv.HaarDetectObjects was resized, so scale the
            # bounding box of each face and convert it to two CvPoints
            pt1 = (int(x * image_scale), int(y * image_scale))
            pt2 = (int((x + w) * image_scale), int((y + h) * image_scale))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)

    return image

def pil2cvGrey(pil_im):
    #from: http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
    pil_im = pil_im.convert('L')
    cv_im = cv.CreateImageHeader(pil_im.size, cv.IPL_DEPTH_8U, 1)
    cv.SetData(cv_im, pil_im.tostring(), pil_im.size[0]  )
    return cv_im

def cv2pil(cv_im):
    return Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())


pil_im=Image.open('testPics/faces.jpg')
cv_im=pil2cv(pil_im)
#the haarcascade files tells opencv what to look for.
faceCascade = cv.Load('C:/Python27/Lib/site-packages/opencv/haarcascade_frontalface_default.xml')
face=DetectFace(cv_im,faceCascade)
img=cv2pil(face)
img.show()

Testing on the first page of Google (Googled "faces"):


Update

This code should do exactly what you want. Let me know if you have questions. I tried to include lots of comments in the code:

'''
Sources:
http://opencv.willowgarage.com/documentation/python/cookbook.html
http://www.lucaamore.com/?p=638
'''

#Python 2.7.2
#Opencv 2.4.2
#PIL 1.1.7

import cv #Opencv
import Image #Image from PIL
import glob
import os

def DetectFace(image, faceCascade, returnImage=False):
    # This function takes a grey scale cv image and finds
    # the patterns defined in the haarcascade function
    # modified from: http://www.lucaamore.com/?p=638

    #variables    
    min_size = (20,20)
    haar_scale = 1.1
    min_neighbors = 3
    haar_flags = 0

    # Equalize the histogram
    cv.EqualizeHist(image, image)

    # Detect the faces
    faces = cv.HaarDetectObjects(
            image, faceCascade, cv.CreateMemStorage(0),
            haar_scale, min_neighbors, haar_flags, min_size
        )

    # If faces are found
    if faces and returnImage:
        for ((x, y, w, h), n) in faces:
            # Convert bounding box to two CvPoints
            pt1 = (int(x), int(y))
            pt2 = (int(x + w), int(y + h))
            cv.Rectangle(image, pt1, pt2, cv.RGB(255, 0, 0), 5, 8, 0)

    if returnImage:
        return image
    else:
        return faces

def pil2cvGrey(pil_im):
    # Convert a PIL image to a greyscale cv image
    # from: http://pythonpath.wordpress.com/2012/05/08/pil-to-opencv-image/
    pil_im = pil_im.convert('L')
    cv_im = cv.CreateImageHeader(pil_im.size, cv.IPL_DEPTH_8U, 1)
    cv.SetData(cv_im, pil_im.tostring(), pil_im.size[0]  )
    return cv_im

def cv2pil(cv_im):
    # Convert the cv image to a PIL image
    return Image.fromstring("L", cv.GetSize(cv_im), cv_im.tostring())

def imgCrop(image, cropBox, boxScale=1):
    # Crop a PIL image with the provided box [x(left), y(upper), w(width), h(height)]

    # Calculate scale factors
    xDelta=max(cropBox[2]*(boxScale-1),0)
    yDelta=max(cropBox[3]*(boxScale-1),0)

    # Convert cv box to PIL box [left, upper, right, lower]
    PIL_box=[cropBox[0]-xDelta, cropBox[1]-yDelta, cropBox[0]+cropBox[2]+xDelta, cropBox[1]+cropBox[3]+yDelta]

    return image.crop(PIL_box)

def faceCrop(imagePattern,boxScale=1):
    # Select one of the haarcascade files:
    #   haarcascade_frontalface_alt.xml  <-- Best one?
    #   haarcascade_frontalface_alt2.xml
    #   haarcascade_frontalface_alt_tree.xml
    #   haarcascade_frontalface_default.xml
    #   haarcascade_profileface.xml
    faceCascade = cv.Load('haarcascade_frontalface_alt.xml')

    imgList=glob.glob(imagePattern)
    if len(imgList)<=0:
        print 'No Images Found'
        return

    for img in imgList:
        pil_im=Image.open(img)
        cv_im=pil2cvGrey(pil_im)
        faces=DetectFace(cv_im,faceCascade)
        if faces:
            n=1
            for face in faces:
                croppedImage=imgCrop(pil_im, face[0],boxScale=boxScale)
                fname,ext=os.path.splitext(img)
                croppedImage.save(fname+'_crop'+str(n)+ext)
                n+=1
        else:
            print 'No faces found:', img

def test(imageFilePath):
    pil_im=Image.open(imageFilePath)
    cv_im=pil2cvGrey(pil_im)
    # Select one of the haarcascade files:
    #   haarcascade_frontalface_alt.xml  <-- Best one?
    #   haarcascade_frontalface_alt2.xml
    #   haarcascade_frontalface_alt_tree.xml
    #   haarcascade_frontalface_default.xml
    #   haarcascade_profileface.xml
    faceCascade = cv.Load('haarcascade_frontalface_alt.xml')
    face_im=DetectFace(cv_im,faceCascade, returnImage=True)
    img=cv2pil(face_im)
    img.show()
    img.save('test.png')


# Test the algorithm on an image
#test('testPics/faces.jpg')

# Crop all jpegs in a folder. Note: the code uses glob which follows unix shell rules.
# Use the boxScale to scale the cropping area. 1=opencv box, 2=2x the width and height
faceCrop('testPics/*.jpg',boxScale=1)

Using the image above, this code extracts 52 out of the 59 faces, producing cropped files such as:

Katrina Malakhova

Another available option is dlib, which is based on machine learning approaches.

import dlib
import Image
from skimage import io
import matplotlib.pyplot as plt


def detect_faces(image):

    # Create a face detector
    face_detector = dlib.get_frontal_face_detector()

    # Run detector and get bounding boxes of the faces on image.
    detected_faces = face_detector(image, 1)
    face_frames = [(x.left(), x.top(),
                    x.right(), x.bottom()) for x in detected_faces]

    return face_frames

# Load image
img_path = 'test.jpg'
image = io.imread(img_path)

# Detect faces
detected_faces = detect_faces(image)

# Crop faces and plot
for n, face_rect in enumerate(detected_faces):
    face = Image.fromarray(image).crop(face_rect)
    plt.subplot(1, len(detected_faces), n+1)
    plt.axis('off')
    plt.imshow(face)

facedetect

https://github.com/wavexx/facedetect is a nice Python OpenCV CLI wrapper, and I have just added that example to their README using ImageMagick:

for file in path/to/pictures/*.jpg; do
  name=$(basename "$file")
  i=0
  facedetect "$file" | while read x y w h; do
    convert "$file" -crop ${w}x${h}+${x}+${y} "path/to/faces/${name%.*}_${i}.${name##*.}"
    i=$(($i+1))
  done
done

Tested on Ubuntu 16.04 with thousands of (unlabeled) Facebook profile pictures, see: https://github.com/cirosantilli/art/tree/d4352a46064d156591817c4eae5199f5ac8f23be/facebook

This sounds like it might be a better question for one of the more (computer) technology focused exchanges.

That said, have you looked into something like this jquery face detection script? I don't know how savvy you are, but it is one option that is OS independent.

This solution also looks promising, but would require Windows.

the above codes work but this is recent implementation using OpenCV I was unable to run the above by the latest and found something that works (from various places)

import cv2
import os

def facecrop(image):
    facedata = "haarcascade_frontalface_alt.xml"
    cascade = cv2.CascadeClassifier(facedata)

    img = cv2.imread(image)

    minisize = (img.shape[1],img.shape[0])
    miniframe = cv2.resize(img, minisize)

    faces = cascade.detectMultiScale(miniframe)

   for f in faces:
        x, y, w, h = [ v for v in f ]
        cv2.rectangle(img, (x,y), (x+w,y+h), (255,255,255))

        sub_face = img[y:y+h, x:x+w]
        fname, ext = os.path.splitext(image)
        cv2.imwrite(fname+"_cropped_"+ext, sub_face)



    return



facecrop("1.jpg")

Autocrop worked out for me pretty well. It is as easy as autocrop -i pics -o crop -w 400 -H 400. You can get the usage in their readme file.

usage: [-h] [-o OUTPUT] [-i INPUT] [-w WIDTH] [-H HEIGHT] [-v]

Automatically crops faces from batches of pictures

optional arguments:
  -h, --help            Show this help message and exit
  -o, --output, -p, --path
            Folder where cropped images will be placed.
            Default: current working directory
  -i, --input
            Folder where images to crop are located.
            Default: current working directory
  -w, --width
            Width of cropped files in px. Default=500
  -H, --height
            Height of cropped files in px. Default=500
  -v, --version         Show program's version number and exit

I have developed an application "Face-Recognition-with-Own-Data-Set" using the python package ‘face_recognition’ and ‘opencv-python’.

The source code and installation guide is in the GitHub - Face-Recognition-with-Own-Data-Set

Or run the source -

import face_recognition
import cv2
import numpy as np

import os
'''
    Get current working director and create a Data directory to store the faces
'''
currentDirectory = os.getcwd()
dirName = os.path.join(currentDirectory, 'Data')
print(dirName)
if not os.path.exists(dirName):
    try:
        os.makedirs(dirName)
    except:
        raise OSError("Can't create destination directory (%s)!" % (dirName))
'''
    For the given path, get the List of all files in the directory tree 
'''
def getListOfFiles(dirName):
    # create a list of file and sub directories
    # names in the given directory
    listOfFile = os.listdir(dirName)
    allFiles = list()
    # Iterate over all the entries
    for entry in listOfFile:
        # Create full path
        fullPath = os.path.join(dirName, entry)
        # If entry is a directory then get the list of files in this directory
        if os.path.isdir(fullPath):
            allFiles = allFiles + getListOfFiles(fullPath)
        else:
            allFiles.append(fullPath)

    return allFiles

def knownFaceEncoding(listOfFiles):
    known_face_encodings=list()
    known_face_names=list()
    for file_name in listOfFiles:
        # print(file_name)
        if(file_name.lower().endswith(('.png', '.jpg', '.jpeg'))):
            known_image = face_recognition.load_image_file(file_name)
            # known_face_locations = face_recognition.face_locations(known_image)
            # known_face_encoding = face_recognition.face_encodings(known_image,known_face_locations)
            face_encods = face_recognition.face_encodings(known_image)
            if face_encods:
                known_face_encoding = face_encods[0]
                known_face_encodings.append(known_face_encoding)
                known_face_names.append(os.path.basename(file_name[0:-4]))
    return known_face_encodings, known_face_names


# Get the list of all files in directory tree at given path
listOfFiles = getListOfFiles(dirName)
known_face_encodings, known_face_names = knownFaceEncoding(listOfFiles)

video_capture = cv2.VideoCapture(0)
cv2.namedWindow("Video", flags= cv2.WINDOW_NORMAL)
# cv2.namedWindow("Video")

cv2.resizeWindow('Video', 1024,640)
cv2.moveWindow('Video', 20,20)


# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True


while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()
    # print(ret)
    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]


    k = cv2.waitKey(1)
    # Hit 'c' on capture the image!
    # Hit 'q' on the keyboard to quit!
    if k == ord('q'):
        break
    elif k== ord('c'):
        face_loc = face_recognition.face_locations(rgb_small_frame)
        if face_loc:
            print("Enter Name -")
            name = input()
            img_name = "{}/{}.png".format(dirName,name)
            (top, right, bottom, left)= face_loc[0]
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
            cv2.imwrite(img_name, frame[top - 5 :bottom + 5,left -5 :right + 5])
            listOfFiles = getListOfFiles(dirName)
            known_face_encodings, known_face_names = knownFaceEncoding(listOfFiles)

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
        # print(face_locations)

        face_names = []

        for face_encoding,face_location in zip(face_encodings,face_locations):
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding, tolerance= 0.55)
            name = "Unknown"
            distance = 0

            # use the known face with the smallest distance to the new face
            face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
            #print(face_distances)
            if len(face_distances) > 0:
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
                    # distance = face_distances[best_match_index]
            #print(face_distances[best_match_index])
            # string_value = '{} {:.3f}'.format(name, distance)
            face_names.append(name)


    process_this_frame = not process_this_frame


    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom + 46), (right, bottom+11), (0, 0, 155), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom +40), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

It will create a 'Data' directory in the current location even if this directory does not exist.

When a face is marked with a rectangle, press 'c' to capture the image and in the command prompt, it will ask for the name of the face. Put the name of the image and enter. You can find this image in the 'Data' directory.

I used this shell command:

for f in *.jpg;do PYTHONPATH=/usr/local/lib/python2.7/site-packages python -c 'import cv2;import sys;rects=cv2.CascadeClassifier("/usr/local/opt/opencv/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml").detectMultiScale(cv2.cvtColor(cv2.imread(sys.argv[1]),cv2.COLOR_BGR2GRAY),1.3,5);print("\n".join([" ".join([str(item) for item in row])for row in rects]))' $f|while read x y w h;do convert $f -gravity NorthWest -crop ${w}x$h+$x+$y ${f%jpg}-$x-$y.png;done;done

You can install opencv and imagemagick on OS X with brew install opencv imagemagick.

Just adding to @Israel Abebe's version. If you add a counter before image extension the algorithm will give all the faces detected. Attaching the code, same as Israel Abebe's. Just adding a counter and accepting the cascade file as an argument. The algorithm works beautifully! Thanks @Israel Abebe for this!

import cv2
import os
import sys

def facecrop(image):
facedata = sys.argv[1]
cascade = cv2.CascadeClassifier(facedata)

img = cv2.imread(image)

minisize = (img.shape[1],img.shape[0])
miniframe = cv2.resize(img, minisize)

faces = cascade.detectMultiScale(miniframe)
counter = 0
for f in faces:
    x, y, w, h = [ v for v in f ]
    cv2.rectangle(img, (x,y), (x+w,y+h), (255,255,255))

    sub_face = img[y:y+h, x:x+w]
    fname, ext = os.path.splitext(image)
    cv2.imwrite(fname+"_cropped_"+str(counter)+ext, sub_face)
    counter += 1
return

facecrop("Face_detect_1.jpg")

PS: Adding as answer. Was not able to add comment because of points issue.

Detect face and then crop and save the cropped image into folder ..

import numpy as np
import cv2 as cv
face_cascade = cv.CascadeClassifier('./haarcascade_frontalface_default.xml')
#eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml')
img = cv.imread('./face/nancy-Copy1.jpg')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
    cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    roi_gray = gray[y:y+h, x:x+w]
    roi_color = img[y:y+h, x:x+w]
    #eyes = eye_cascade.detectMultiScale(roi_gray)
    #for (ex,ey,ew,eh) in eyes:
     #   cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
    sub_face = img[y:y+h, x:x+w]
    face_file_name = "face/" + str(y) + ".jpg"
    plt.imsave(face_file_name, sub_face)
plt.imshow(sub_face)

I think the best option is Google Vision API. It's updated, it uses machine learning and it improves with the time.

You can check the documentation for examples: https://cloud.google.com/vision/docs/other-features

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!