T1
踩坑警告!!!
每个点走到的概率不同(可能多种方法走到了同一个点),千万不能直接把所有可能走到的点情况列举出来然后直接根据情况数求概率
昨天T1也挂,今天T1也挂,再挂T1直接不活

首先一个基础的期望概念:
E(x)=i=1∑npi∗xi其中pi为概率,xi为得到的结果
显然,x,y两个坐标的变化是相互独立的,因此我们只需考虑一维即可
处理x2,我们发现:
E[x2]=2ni=0∑nCni∗j=0∑i(i−2j)2
其中2n是走n步所有的情况,i=0∑nCni是走i步的方案,j=0∑i(i−2j)2是每次走得到的结果,i−2j相当于实际走的位移(能走了再走回来吖QAQ)
然后用余弦定理c2=a2+b2−2abcosc 可证走n步后的期望就是n。
或者:走到x后,下一步一定是x±1,根据期望线性性质,E(x2)=E((x±1)2)=2E((x+1)2)+E((x−1)2)=x2+1,所以走1步对期望的贡献都是1,即走n步后的期望就是n。