Remove one dataframe from another with Pandas

自闭症网瘾萝莉.ら 提交于 2019-12-02 08:51:06

问题


I have two dataframes of different size (df1 nad df2). I would like to remove from df1 all the rows which are stored within df2.

So if I have df2 equals to:

     A  B
0  wer  6
1  tyu  7

And df1 equals to:

     A  B  C
0  qwe  5  a
1  wer  6  s
2  wer  6  d
3  rty  9  f
4  tyu  7  g
5  tyu  7  h
6  tyu  7  j
7  iop  1  k

The final result should be like so:

     A  B  C
0  qwe  5  a
1  rty  9  f
2  iop  1  k

I was able to achieve my goal by using a for loop but I would like to know if there is a better and more elegant and efficient way to perform such operation.

Here is the code I wrote in case you need it: import pandas as pd

df1 = pd.DataFrame({'A' : ['qwe', 'wer', 'wer', 'rty', 'tyu', 'tyu', 'tyu', 'iop'],
                    'B' : [    5,     6,     6,     9,     7,     7,     7,     1],
                    'C' : ['a'  ,   's',   'd',   'f',   'g',   'h',   'j',   'k']})

df2 = pd.DataFrame({'A' : ['wer', 'tyu'],
                    'B' : [    6,     7]})

for i, row in df2.iterrows():
    df1 = df1[(df1['A']!=row['A']) & (df1['B']!=row['B'])].reset_index(drop=True)

回答1:


Use merge with outer join with filter by query, last remove helper column by drop:

df = pd.merge(df1, df2, on=['A','B'], how='outer', indicator=True)
       .query("_merge != 'both'")
       .drop('_merge', axis=1)
       .reset_index(drop=True)
print (df)
     A  B  C
0  qwe  5  a
1  rty  9  f
2  iop  1  k



回答2:


You can use np.in1d to check if any row in df1 exists in df2. And then use it as a reversed mask to select rows from df1.

df1[~df1[['A','B']].apply(lambda x: np.in1d(x,df2).all(),axis=1)]\
                   .reset_index(drop=True)
Out[115]: 
     A  B  C
0  qwe  5  a
1  rty  9  f
2  iop  1  k



回答3:


pandas has a method called isin, however this relies on unique indices. We can define a lambda function to create columns we can use in this from the existing 'A' and 'B' of df1 and df2. We then negate this (as we want the values not in df2) and reset the index:

import pandas as pd

df1 = pd.DataFrame({'A' : ['qwe', 'wer', 'wer', 'rty', 'tyu', 'tyu', 'tyu', 'iop'],
                    'B' : [    5,     6,     6,     9,     7,     7,     7,     1],
                    'C' : ['a'  ,   's',   'd',   'f',   'g',   'h',   'j',   'k']})

df2 = pd.DataFrame({'A' : ['wer', 'tyu'],
                    'B' : [    6,     7]})

unique_ind = lambda df: df['A'].astype(str) + '_' + df['B'].astype(str)
print df1[~unique_ind(df1).isin(unique_ind(df2))].reset_index(drop=True)

printing:

     A  B  C
0  qwe  5  a
1  rty  9  f
2  iop  1  k



回答4:


The cleanest way I found was to use drop from pandas using the index of the dataframe you want to drop:

df1.drop(df2.index, axis=0,inplace=True)


来源:https://stackoverflow.com/questions/44546086/remove-one-dataframe-from-another-with-pandas

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!