Encode an ADT / sealed trait hierarchy into Spark DataSet column

懵懂的女人 提交于 2019-11-26 14:46:04

问题


If I want to store an Algebraic Data Type (ADT) (ie a Scala sealed trait hierarchy) within a Spark DataSet column, what is the best encoding strategy?

For example, if I have an ADT where the leaf types store different kinds of data:

sealed trait Occupation
case object SoftwareEngineer extends Occupation
case class Wizard(level: Int) extends Occupation
case class Other(description: String) extends Occupation

Whats the best way to construct a:

org.apache.spark.sql.DataSet[Occupation]

回答1:


TL;DR There is no good solution right now, and given Spark SQL / Dataset implementation, it is unlikely there will be one in the foreseeable future.

You can use generic kryo or java encoder

val occupation: Seq[Occupation] = Seq(SoftwareEngineer, Wizard(1), Other("foo"))
spark.createDataset(occupation)(org.apache.spark.sql.Encoders.kryo[Occupation])

but is hardly useful in practice.

UDT API provides another possible approach as for now (Spark 1.6, 2.0, 2.1-SNAPSHOT) it is private and requires quite a lot boilerplate code (you can check o.a.s.ml.linalg.VectorUDT to see example implementation).



来源:https://stackoverflow.com/questions/41030073/encode-an-adt-sealed-trait-hierarchy-into-spark-dataset-column

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!