原文:https://blog.csdn.net/u013421629/article/details/83178970
一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路?
有十亿个标题,存在一个文件中,一行一个标题。有5万个敏感词,存在另一个文件。写一个程序过滤掉所有标题中的所有敏感词,保存到另一个文件中。
1、DFA过滤敏感词算法
在实现文字过滤的算法中,DFA是比较好的实现算法。DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
算法核心是建立了以敏感词为基础的许多敏感词树。
python 实现DFA算法:
# -*- coding:utf-8 -*- import time time1=time.time() # DFA算法 class DFAFilter(): def __init__(self): self.keyword_chains = {} self.delimit = '\x00' def add(self, keyword): keyword = keyword.lower() chars = keyword.strip() if not chars: return level = self.keyword_chains for i in range(len(chars)): if chars[i] in level: level = level[chars[i]] else: if not isinstance(level, dict): break for j in range(i, len(chars)): level[chars[j]] = {} last_level, last_char = level, chars[j] level = level[chars[j]] last_level[last_char] = {self.delimit: 0} break if i == len(chars) - 1: level[self.delimit] = 0 def parse(self, path): with open(path,encoding='utf-8') as f: for keyword in f: self.add(str(keyword).strip()) def filter(self, message, repl="*"): message = message.lower() ret = [] start = 0 while start < len(message): level = self.keyword_chains step_ins = 0 for char in message[start:]: if char in level: step_ins += 1 if self.delimit not in level[char]: level = level[char] else: ret.append(repl * step_ins) start += step_ins - 1 break else: ret.append(message[start]) break else: ret.append(message[start]) start += 1 return ''.join(ret) if __name__ == "__main__": gfw = DFAFilter() path="F:/文本反垃圾算法/sensitive_words.txt" gfw.parse(path) text="新疆骚乱苹果新品发布会雞八" result = gfw.filter(text) print(text) print(result) time2 = time.time() print('总共耗时:' + str(time2 - time1) + 's')
运行效果:
E:\laidefa\python.exe "E:/Program Files/pycharmproject/敏感词过滤算法/敏感词过滤算法DFA.py" 新疆骚乱苹果新品发布会雞八 ****苹果新品发布会** 总共耗时:0.0010344982147216797s Process finished with exit code 0
2、AC自动机过滤敏感词算法
AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。
简单地讲,AC自动机就是字典树+kmp算法+失配指针
# -*- coding:utf-8 -*- import time time1=time.time() # AC自动机算法 class node(object): def __init__(self): self.next = {} self.fail = None self.isWord = False self.word = "" class ac_automation(object): def __init__(self): self.root = node() # 添加敏感词函数 def addword(self, word): temp_root = self.root for char in word: if char not in temp_root.next: temp_root.next[char] = node() temp_root = temp_root.next[char] temp_root.isWord = True temp_root.word = word # 失败指针函数 def make_fail(self): temp_que = [] temp_que.append(self.root) while len(temp_que) != 0: temp = temp_que.pop(0) p = None for key,value in temp.next.item(): if temp == self.root: temp.next[key].fail = self.root else: p = temp.fail while p is not None: if key in p.next: temp.next[key].fail = p.fail break p = p.fail if p is None: temp.next[key].fail = self.root temp_que.append(temp.next[key]) # 查找敏感词函数 def search(self, content): p = self.root result = [] currentposition = 0 while currentposition < len(content): word = content[currentposition] while word in p.next == False and p != self.root: p = p.fail if word in p.next: p = p.next[word] else: p = self.root if p.isWord: result.append(p.word) p = self.root currentposition += 1 return result # 加载敏感词库函数 def parse(self, path): with open(path,encoding='utf-8') as f: for keyword in f: self.addword(str(keyword).strip()) # 敏感词替换函数 def words_replace(self, text): """ :param ah: AC自动机 :param text: 文本 :return: 过滤敏感词之后的文本 """ result = list(set(self.search(text))) for x in result: m = text.replace(x, '*' * len(x)) text = m return text if __name__ == '__main__': ah = ac_automation() path='F:/文本反垃圾算法/sensitive_words.txt' ah.parse(path) text1="新疆骚乱苹果新品发布会雞八" text2=ah.words_replace(text1) print(text1) print(text2) time2 = time.time() print('总共耗时:' + str(time2 - time1) + 's')
E:\laidefa\python.exe "E:/Program Files/pycharmproject/敏感词过滤算法/AC自动机过滤敏感词算法.py" 新疆骚乱苹果新品发布会雞八 ****苹果新品发布会** 总共耗时:0.0010304450988769531s Process finished with exit code 0
3、java 实现参考链接:
https://www.cnblogs.com/AlanLee/p/5329555.html
4、敏感词生成
# -*- coding:utf-8 -*- path = 'F:/文本反垃圾算法/sensitive_worlds7.txt' from 敏感词过滤算法.langconv import * import pandas as pd import pypinyin # 文本转拼音 def pinyin(text): """ :param text: 文本 :return: 文本转拼音 """ gap = ' ' piny = gap.join(pypinyin.lazy_pinyin(text)) return piny # 繁体转简体 def tradition2simple(text): """ :param text: 要过滤的文本 :return: 繁体转简体函数 """ line = Converter('zh-hans').convert(text) return line data=pd.read_csv(path,sep='\t') chinise_lable=[] chinise_type=data['type'] for i in data['lable']: line=tradition2simple(i) chinise_lable.append(line) chg_data=pd.DataFrame({'lable':chinise_lable,'type':chinise_type}) eng_lable=[] eng_type=data['type'] for i in data['lable']: # print(i) piny=pinyin(i) # print(piny) eng_lable.append(piny) eng_data=pd.DataFrame({'lable':eng_lable,'type':eng_type}) # print(eng_data) # 合并 result=chg_data.append(eng_data,ignore_index=True) # 数据框去重 res = result.drop_duplicates() print(res) # 输出 res.to_csv('F:/文本反垃圾算法/中英混合的敏感词10.txt',header=True,index=False,sep='\t',encoding='utf-8')