How to transform a key/value string into separate columns?

十年热恋 提交于 2019-12-02 01:32:15

问题


I've got a data.frame with key/value string column containing information about features and their values for a set of users. Something like this:

data<-data.frame(id=1:3,statid=c("s003e","s093u","s085t"),str=c("a:1,7:2","a:1,c:4","a:3,b:5,c:33"))
data
#   id statid          str
# 1  1  s003e      a:1,7:2
# 2  2  s093u      a:1,c:4
# 3  3  s085t a:3,b:5,c:33

What I'm trying to do is to create a data.frame containing column for every feature. Like this:

data_after<-data.frame(id=1:3,statid=c("s003e","s093u","s085t"),
                   a=c(1,1,3),b=c(0,0,5),c=c(0,4,33),"7"=c(2,0,0))
data_after
#   id statid a b  c X7
# 1  1  s003e 1 0  0  2
# 2  2  s093u 1 0  4  0
# 3  3  s085t 3 5 33  0

I was trying to use str_split from stringr package and then transform elements of created list to data.frames (later bind them using for example rbind.fill from plyr) but couldn't done it. Any help will be appreciated!


回答1:


You can use dplyr and tidyr:

library(dplyr); library(tidyr)
data %>% mutate(str = strsplit(str, ",")) %>% unnest(str) %>% 
         separate(str, into = c('var', 'val'), sep = ":") %>% spread(var, val, fill = 0)

#   id statid 7 a b  c
# 1  1  s003e 2 1 0  0
# 2  2  s093u 0 1 0  4
# 3  3  s085t 0 3 5 33



回答2:


We can use cSplit to do this in a cleaner way. Convert the data to 'long' format by splitting at ,, then do the split at : and dcast from 'long' to 'wide'

library(splitstackshape)
library(data.table)
dcast(cSplit(cSplit(data, "str", ",", "long"), "str", ":"), 
                    id+statid~str_1, value.var="str_2", fill = 0)
#   id statid 7 a b  c
#1:  1  s003e 2 1 0  0
#2:  2  s093u 0 1 0  4
#3:  3  s085t 0 3 5 33


来源:https://stackoverflow.com/questions/38144082/how-to-transform-a-key-value-string-into-separate-columns

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!