Pytorch复现U-Net, R2U-Net, Attention U-Net, Attention R2U-Net

依然范特西╮ 提交于 2019-12-02 01:19:14

Pytorch复现U-Net, R2U-Net, Attention U-Net, Attention R2U-Net

项目地址:pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net

U-Net, R2U-Net, Attention U-Net, Attention R2U-Net

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://arxiv.org/abs/1505.04597

Recurrent Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmentation

https://arxiv.org/abs/1802.06955

Attention U-Net: Learning Where to Look for the Pancreas

https://arxiv.org/abs/1804.03999

Attention R2U-Net : Just integration of two recent advanced works (R2U-Net + Attention U-Net)

网络结构图

U-Net

R2U-Net

Attention U-Net

Attention R2U-Net

评估

将模型在 ISIC 2018 dataset数据集上进行测试,数据集分为训练集、验证集、测试集,占比分别为70%,10%,20%。

图片数量分别为1815,259,520.

评估指标和结果如下图所示:

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!