MultiRNN and static_rnn error: Dimensions must be equal, but are 256 and 129

≯℡__Kan透↙ 提交于 2019-12-02 00:18:18

问题


I want to build an LSTM network with 3 Layers. Here's the code:

num_layers=3
time_steps=10
num_units=128
n_input=1
learning_rate=0.001
n_classes=1
...

x=tf.placeholder("float",[None,time_steps,n_input],name="x")
y=tf.placeholder("float",[None,n_classes],name="y")
input=tf.unstack(x,time_steps,1)

lstm_layer=rnn_cell.BasicLSTMCell(num_units,state_is_tuple=True)
network=rnn_cell.MultiRNNCell([lstm_layer for _ in range(num_layers)],state_is_tuple=True)

outputs,_=rnn.static_rnn(network,inputs=input,dtype="float")

With num_layers=1 it works fine, but with more than one layer I get the error at this line:

outputs,_=rnn.static_rnn(network,inputs=input,dtype="float")

ValueError: Dimensions must be equal, but are 256 and 129 for 'rnn/rnn/multi_rnn_cell/cell_0/cell_0/basic_lstm_cell/MatMul_1' (op: 'MatMul') with input shapes: [?,256], [129,512].

Can anyone explain where the values 129 and 512 are coming from?


回答1:


You should not reuse the same cell for the first and deeper layers, because their inputs are different, hence kernel matrices are different. Try this:

# Extra function is for readability. No problem to inline it.
def make_cell(lstm_size):
  return tf.nn.rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=True)

network = rnn_cell.MultiRNNCell([make_cell(num_units) for _ in range(num_layers)], 
                                state_is_tuple=True)


来源:https://stackoverflow.com/questions/48372994/multirnn-and-static-rnn-error-dimensions-must-be-equal-but-are-256-and-129

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!