How does Spark keep track of the splits in randomSplit?

纵然是瞬间 提交于 2019-12-01 22:37:37

It's exactly the same as sampling an RDD.

Assuming you have the weight array (0.6, 0.2, 0.2), Spark will generate one DataFrame for each range (0.0, 0.6), (0.6, 0.8), (0.8, 1.0).

When it's time to read the result DataFrame, Spark will just go over the parent DataFrame. For each item, generate a random number, if that number fall in the the specified range, then emit the item. All child DataFrame share the same random number generator (technically, different generators with the same seed), so the sequence of random number is deterministic.

For your last question, if you did not cache the parent DataFrame, then the data for the input DataFrame will be re-fetch each time an output DataFrame is computed.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!