ERNIE加持,飞桨图神经网络PGL全新升级
在2019年深度学习开发者秋季峰会上,百度对外发布飞桨图学习框架PGL v1.0正式版,历经5个月的版本迭代,PGL再度升级,发布v1.1版本,带来了最新的算法突破、全面的工业级图学习框架能力以及工业级的实践案例。下面我们逐一揭秘升级点。 最新算法突破:结合语义与结构信息的图神经网络模型ERNIESage 在很多工业应用中,往往出现如下图所示的一种特殊的图:Text Graph。顾名思义,图的节点属性由文本构成,而边的构建提供了结构信息。如搜索场景下的Text Graph,节点可由搜索词、网页标题、网页正文来表达,用户反馈和超链信息则可构成边关系。 PGL团队提出ERNIESage模型同时建模文本语义与图结构信息,有效提升Text Graph的应用效果。其中ERNIE是百度推出的基于知识增强的持续学习语义理解框架,在中英文16个任务上超越业内同类最优模型,以历史上首次超越90大关的成绩登顶自然语言处理领域最权威的 GLUE评测榜单 ,并在最近SemEval 2020上斩获5项世界冠军。 ERNIESage是ERNIE与GraphSAGE碰撞的结果,是ERNIE SAmple aggreGatE的简称,它的结构如下图所示,主要思想是通过ERNIE作为聚合函数(Aggregators),建模自身节点和邻居节点的语义与结构关系。 ERNIESage对于文本的建模是构建在邻居聚合的阶段