Table of Contents 前言1.贝叶斯法则2.正则化项3.贝叶斯正则化第$I$层贝叶斯框架第$\text{II}$层贝叶斯框架贝叶斯正则化算法步骤参考资料 前言 上一篇: 正则化 下一篇:贝叶斯正则化与提前终止法关系 1.贝叶斯法则 贝叶斯法则: P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(A)称为先验概率(反映在已知B之前对事件A的认知);P(A|B)称为后验概率(反映在已知B之后对事件A的认知);P(B|A)是在事件A发生的条件下,事件B发生的条件概率;P(B)是事件的边缘概率(被用作归一化因子) 贝叶斯法则在于先验概率,如果它很大,那么后验概率也将显著增大 2.正则化项 一个包括网络输入及其对应目标输出的训练样本集: \left{ p_{1},t_{1} \right},\left{ p_{2},t_{2} \right},\cdots,\left{ p_{n},t_{n} \right} 假设目标输出通过如下方式生成: t_{q} = g(p_{q}) + \varepsilon_{q} (13.2) 其中,g()为某未知函数,\varepsilon_{q}为一个随机独立分布的零均值噪声源。我们的训练目标是产生一个能够逼近函数g()并且忽略噪声影响的神经网络。 神经网络训练的标准性能指标是该网络在训练集上的误差平方和: F(x) = E