余弦

文本相似度的衡量之余弦相似度

此生再无相见时 提交于 2020-03-05 04:59:27
余弦计算相似度度量 相似度度量(Similarity),即计算个体间的相似程度,相似度度量的值越小,说明个体间相似度越小,相似度的值越大说明个体差异越大。 对于多个不同的文本或者短文本对话消息要来计算他们之间的相似度如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,通过计算几个或者多个不同的向量的差异的大小,来计算文本的相似度。下面介绍一个详细成熟的向量空间余弦相似度方法计算相似度 向量空间余弦相似度(Cosine Similarity) 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合。如下图: 如上图二:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或者说是相等的。如果a和b向量夹角较大,或者反方向。如下图 如上图三: 两个向量a,b的夹角很大可以说a向量和b向量有很底的的相似性,或者说a和b向量代表的文本基本不相似。那么是否可以用两个向量的夹角大小的函数值来计算个体的相似度呢? 向量空间余弦相似度理论就是基于上述来计算个体相似度的一种方法。下面做详细的推理过程分析。 想到余弦公式

相关系数之余弦相似度

∥☆過路亽.° 提交于 2020-03-05 04:56:43
向量余弦相似度 余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,夹角等于0,即两个向量相等,这就叫"余弦相似性"。 上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合。如下图: 如上图二:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或者说是相等的。如果a和b向量夹角较大,或者反方向。如下图 如上图三: 两个向量a,b的夹角很大可以说a向量和b向量有很底的的相似性,或者说a和b向量代表的文本基本不相似。那么是否可以用两个向量的夹角大小的函数值来计算个体的相似度呢? 向量空间余弦相似度理论就是基于上述来计算个体相似度的一种方法。下面做详细的推理过程分析。 想到余弦公式,最基本计算方法就是初中的最简单的计算公式, 计算夹角 的余弦定值公式为: 但是这个是只适用于直角三角形的,而在非直角三角形中,余弦定理的公式是 三角形中边a和b的夹角 的余弦计算公式为: 公式(2) 余弦定理推导过程: 方法一: 方法二: 在向量表示的三角形中,假设a向量是(x1, y1),b向量是(x2, y2),那么可以将余弦定理改写成下面的形式: 向量a和向量b的夹角 的余弦计算如下 向量点乘及推导过程: 点乘的结果是一个标量

图像处理中的傅里叶变换和频率域滤波概念

风流意气都作罢 提交于 2020-02-11 21:28:14
写在前面的话 作者是一名在读的硕士研究僧,方向是机器视觉。由于视觉是一门相对复杂的学科,作者在课堂上学到的东西只是非常浅显的内容,我们老师说是,领我们进了个门。现在打算利用图书馆和网络上的资源进行自学。由于是刚开始写自己的博客,并且所具备的专业知识非常的有限,难免有出错之处,如果有朋友发现一些毛病,希望能够指正。哈哈,话不多说,进入正题。 作者使用的是冈萨雷斯的《数字图像处理(Matlab版)》,打算先用matlab先跟着书上的内容把代码先练一练。以后,再重新学习深入一些的知识。这里不会将书中的全部内容都列一遍,我会选择性的把重要的部分代实现。 频率域 在介绍频率域图像处理之前,先提几个问题。 1.什么是频率域? 2.为什么要在频率域中进行图像处理? 频率域的概念 频率域是指从函数的频率角度出发分析函数,和频率域相对的是时间域。简单说就是如果从时间域分析信号时,时间是横坐标,振幅是纵坐标。而在频率域分析的时候则是频率是横坐标,振幅是纵坐标。 举个例子,我们认为音乐是一个随着时间变化的震动。但是如果站在频域的角度上来讲,音乐是一个随着频率变化的震动,这样我们站在时间域的角度去观察你会发现音乐是静止的。同理,如果我们站在时间域的角度观察频率域的世界,就会发现世界是静止的,也是永恒的。这是因为在频率域是没有时间的概念的,那么也就没有了随着时间变化着的世界了。 另外,我们需要借助傅立叶变换

正弦 sin 余弦 cos

大憨熊 提交于 2020-02-09 08:58:14
正弦 以下概念需掌握 直角,锐角 sinA = 对边 / 斜边 性質 奇偶性 奇 定義域 (-∞,∞) 到達域 [-1,1] 周期 2π 在數學中, 正弦 是一種週期函數,是 三角函数 的一種。它的 定义域 是整个 实数集 , 值域 是[-1,1]。它是 周期函数 ,其最小正周期为2π。在自变量为(4n+1)π/2〔n为 整数 〕时,该函数有极大值1;在自变量为(4n+3)π/2时,该函数有 极小值 -1。 正弦 函数是 奇函数 ,其图像关于 原点 对称。 正弦 的符号为 sin ,取自拉丁文sinus。该符号最早由 瑞士 数学家 欧拉 所使用。 单位圆定义 来源: https://www.cnblogs.com/jiahuafu/p/5983419.html

余弦计算相似度度量

半城伤御伤魂 提交于 2019-12-24 00:24:35
相似度度量(Similarity),即计算个体间的相似程度,相似度度量的值越小,说明个体间相似度越小,相似度的值越大说明个体差异越大。 对于多个不同的文本或者短文本对话消息要来计算他们之间的相似度如何,一个好的做法就是将这些文本中词语,映射到向量空间,形成文本中文字和向量数据的映射关系,通过计算几个或者多个不同的向量的差异的大小,来计算文本的相似度。下面介绍一个详细成熟的向量空间余弦相似度方法计算相似度 向量空间余弦相似度(Cosine Similarity) 余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。 余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。 上图两个向量a,b的夹角很小可以说a向量和b向量有很高的的相似性,极端情况下,a和b向量完全重合。如下图: 如上图二:可以认为a和b向量是相等的,也即a,b向量代表的文本是完全相似的,或者说是相等的。如果a和b向量夹角较大,或者反方向。如下图 如上图三: 两个向量a,b的夹角很大可以说a向量和b向量有很低的的相似性,或者说a和b向量代表的文本基本不相似。那么是否可以用两个向量的夹角大小的函数值来计算个体的相似度呢? 向量空间余弦相似度理论就是基于上述来计算个体相似度的一种方法。下面做详细的推理过程分析。 想到余弦公式

笔记:勾股定理,三角函数

孤人 提交于 2019-12-02 08:05:41
勾股定理: c²=a²+b² 锐角:大于0而小于90的角 正弦: 在直角三角形中,任意一 锐角 ∠A的 对边 (a) 与 斜边 (c) 的比叫做∠A的正弦,记作sinA,如上图,即 sinA=a/c 余弦:∠A的余弦是它的邻边(b)比三角形的斜边(c),即 cosA=b/c ,也可写为 cosA=AC/AB 。 正切: ∠A的正切是它的对边(a)邻边(b),即 tanA=a/b ,也可写为 tanA=BC/AC。 一个角的正弦平方加这个角的余弦平方等于1,即 (sinA)²+( cosA)²=1 tanA=sinA/cosA 。分母(cosA)不能等于0 来源: https://blog.csdn.net/weixin_42595884/article/details/102737344