cs231N_课程笔记 (转)
本文转载自:https://zhuanlan.zhihu.com/p/21560667?refer=intelligentunit 译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Neural Nets notes 2,课程教师Andrej Karpathy授权翻译。本篇教程由杜客翻译完成,堃堃进行校对修改。译文含公式和代码,建议PC端阅读。 原文如下 内容列表: 设置数据和模型 数据预处理 权重初始化 批量归一化(Batch Normalization) 正则化(L2/L1/Maxnorm/Dropout) 损失函数 小结 设置数据和模型 在上一节中介绍了神经元的模型,它在计算内积后进行非线性激活函数计算,神经网络将这些神经元组织成各个层。这些做法共同定义了评分函数(score function)的新形式,该形式是从前面线性分类章节中的简单线性映射发展而来的。具体来说,神经网络就是进行了一系列的线性映射与非线性激活函数交织的运算。本节将讨论更多的算法设计选项,比如数据预处理,权重初始化和损失函数。 数据预处理 关于数据预处理我们有3个常用的符号,数据矩阵X,假设其尺寸是[N x D](N是数据样本的数量,D是数据的维度)。 均值减法(Mean subtraction)是预处理最常用的形式。它对数据中每个独立特征减去平均值