小波变换

傅里叶变换,小波变换,EMD,HHT,VMD(经典和现代信号处理方法基本原理概念)

梦想与她 提交于 2020-02-26 16:39:13
对于信号的处理,经常可以用到如下几种方法,比如傅里叶变换、小波变换、经验模式分解(Empirical Mode Decomposition)、变分模式分解(Variational Mode Decomposition)和Hilbert-Huang变换(Hilbert-Huang Transform,HHT)。 对于傅里叶变换而言,是目前所接触到应用最多的信号处理法。通过傅里叶变换可以获取信号的频率信息。但是,傅里叶变换对于非平稳信号(频率随时间变化的信号)的处理能力不足,且只能获取一段信号总体上包含哪些频率成分,对各成分出现的时刻并无所知。 小波变换的数学基础是傅里叶变换,其被称为数学显微镜。小波变换是时间和频率的局部变换。小波变换换掉傅里叶变换的基,将无限长的三角函数基变换成了有限长的会衰减的小波基,不仅能够获取频率,还可以定位时间。通过小波变换,不仅可以知道信号的频率部分,还知道其在时间上的具体位置。对于突变信号,小波变换的效果要好于傅里叶变换。小波变换的一个要点是寻找一个小波函数。但是小波变换也有缺点和不足,就是小波基需要人为选择,同时和HHT相比,小波变换因为受到Heisenberg测不准原理(一个信号不能同时在时域和频域上过于集中)的制约,在提高时间精度的时候就要牺牲掉频率精度。同时,在处理含有突变信号的时候,HHT要比小波变换效果更好。 Hilbert

小波变换原理

筅森魡賤 提交于 2020-02-07 01:33:00
https://www.cnblogs.com/warmbeast/p/7809286.html 从傅里叶变换到小波变换,并不是一个完全抽象的东西,可以讲得很形象。小波变换有着明确的物理意义,如果我们从它的提出时所面对的问题看起,可以整理出非常清晰的思路。 下面就按照傅里叶–>短时傅里叶变换–>小波变换的顺序,讲一下为什么会出现小波这个东西、小波究竟是怎样的思路。 傅里叶变换 关于傅里叶变换的基本概念在此我们就不再赘述了,默认大家现在正处在理解了傅里叶但还没理解小波的道路上。 下面我们主要将傅里叶变换的不足。即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案“对非平稳过程,傅里叶变换有局限性”。看如下一个简单的信号: 做完FFT(快速傅里叶变换)后,可以在频谱上看到清晰的四条线,信号包含四个频率部分。一切没有问题,但是,如果是频率随着时间变化的非平稳信号呢? 如上图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。做FFT后,我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。 可见,傅里叶变换处理非平稳信号有先天缺陷

浅谈傅里叶变换、小波变换、HHT变换

雨燕双飞 提交于 2020-01-29 07:01:00
浅谈傅里叶变换、小波变换、HHT变换 一、傅里叶变换 1.1傅里叶变换介绍 二、小波变换 2.1小波变换正反变换公式 2.2小波变换适应场景及其优缺点 2.3小波变换的应用 三、HHT变换 3.1HHT产生的背景 3.2 HHT变换介绍 3.3 HHT对信号分析的框图 3.4 EMD经验模式分解的基本原理 致谢 一、傅里叶变换 1.1傅里叶变换介绍 \quad 我们生活中常见的信息的描述基本上都是在时域空间内进行描述的,如下图1所示;但如果当我们碰到一些杂乱无章的信号需要处理时,如图二所示,我们就很难在时域空间内分析出任何有用信息。于是伟大的傅里叶提出了傅里叶变换理论,将时域空间内的信息可以转换到频域空间,并且将两个空间通过一套完整的转换公式联系起来。于是我们可以对图二的时域信号进行傅里叶变换,我们则会得到像图三(此处图三并不代表图二的频域显示图,我只是为了讲解时域到频域这一变换,还望理解)所示的信号在频域空间的分布图。 \quad 1822年,法国工程师傅里叶指出:一个“任意”的周期函数 x ( t ) x(t) x ( t ) 都可以分解为无穷个不同频率正弦信号的和,即傅里叶级数。其中求解傅里叶系数的过程就是傅里叶变换。如下所示,第一个公式我们称之为傅里叶变换,将时域信号 f ( t ) f(t) f ( t ) 在整个区间 R R R 内进行积分,转换为频域信号 F ( w

小波变换

前提是你 提交于 2019-12-23 02:10:18
转自:http://www.kunli.info/2011/02/18/fourier-wavelet-motion-signal-2/ 小波变换和motion信号处理(十一) (十一)scaling function与小波函数的结合 说到这里,可能你对scaling function以及多解析度分析已经比较理解了。但是,我们还没有涉及到它们在小波变换中的具体应用,也就是还没有回答刚才那个问题:凭空插了一个scaling function到小波basis组合中干嘛。也就是说,我们希望理解scaling function是怎么和小波函数结合的呢,多解析度能给小波变换带来什么样的好处呢。这其实就是是小波变换中的核心知识。理解了这个,后面的小波变换就是纯数学计算了。 好,我们已经知道,对于子空间V0,basis是scaling function: 对应的小波函数是: ps:在V0中的scaling function和wavelet function的组合:子空间V0中scaling function 8个单位全都是 ,V1的basis集合等于 根号2分之一乘以(V0 scaling function V0 wavelet function)。V0中j=0,2的j次幂为basis 分段数,V0中2的0次方为1,scaling function 为一整部分;V1中j=1,V1中的basis

小波变换通俗讲解(2)

房东的猫 提交于 2019-12-18 20:46:25
这是《小波变换和motion信号处理》系列的第二篇,深入小波。 第一篇 我进行了基础知识的铺垫, 第三篇 主要讲解应用。 在上一篇中讲到,每个小波变换都会有一个mother wavelet,我们称之为母小波,同时还有一个father wavelet,就是scaling function。而该小波的basis函数其实就是对这个母小波和父小波缩放和平移形成的。缩放倍数都是2的级数,平移的大小和当前其缩放的程度有关。 还讲到,小波系统有很多种,不同的母小波,衍生的小波基就完全不同。小波展开的近似形式是这样: 其中的 就是小波级数,这些级数的组合就形成了小波变换中的基basis。和傅立叶级数有一点不同的是,小波级数通常是orthonormal basis,也就是说,它们不仅两两正交,还归一化了。 我们还讲了一般小波变换的三个特点,就是小波级数是二维的,能定位时域和频域,计算很快。但我们并没有深入讲解,比如,如何理解这个二维?它是如何同时定位频域和时域的? 在这一篇文章里,我们就来讨论一下这些特性背后的原理。 首先,我们一直都在讲小波展开的近似形式。那什么是完整形式呢?之前讲到,小波basis的形成,是基于基本的小波函数,也就是母小波来做缩放和平移的。但是,母小波并非唯一的原始基。在构建小波基函数集合的时候,通常还要用到一个函数叫尺度函数,scaling function

在OpenCV里实现小波变换

回眸只為那壹抹淺笑 提交于 2019-12-06 17:36:23
小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。 对于二维图像Haar变换不再从一个方向进行滤波,而是从水平和竖直两个方向进行低通和高通滤波(水平和竖直先后不影响),用图像表述如图所示:图中a表示原图,图b表示经过一级小波变换的结果,h1 表示水平反向的细节,v1 表示竖直方向的细节,c1表示对角线方向的细节,b表示下2采样的图像。图c中表示继续进行Haar小波变换。一级Haar小波变换实际效果如图3所示: 在这里需要安装PyWavelets库:pip install PyWavelets 然后可以使用下面例子来演示小波变换: #python 3.7.4,opencv4.1 #蔡军生 https://blog.csdn.net/caimouse/article/details

小波变换网文精粹:小波:看森林,也看树木(二)

孤街浪徒 提交于 2019-12-05 19:27:46
英文原名:Wavelets: Seeing the forest and the trees 转自:http://yswhu.bokee.com/viewdiary.10391865.html 二、改变现实(Transforming Reality) 小波分析允许研究者们去隔离和操作隐藏在众多数据之中的模式的特殊类型,我们的眼睛能以同样的方法在森林中挑出树木,或者我们的耳朵能在交响曲中分辨出笛声。理解小波是怎样做这个的一种方法是开始在两种不同声音之间,比如叉子的音调和人声,找出不同点,之后敲打叉子,你会听到一种持续很长时间的纯音调。 在数学理论中,这样的音调称为频率局部化,它由单个无更高频率音调的音符组成。 相比之下, 一个人说的话仅仅持续一秒钟,因此称为时间域局部化,它在频率域里没有局部化是因为说的话不是一个单音调,而是有许多不同频率的音调结合在一起的音调。 在19世纪,数学家认为现实中的叉子音调是完美的,这个理论就是著名的傅立叶分析。Jean Baptiste Joseph Fourier, 一位法国数学家,在1807年声称任何反复波形(或者周期函数),像叉子发出的声波,能被一个无限的各种频率的正弦波和余弦波之合来表示。 傅立叶理论的一个熟悉阐述是在音乐中发生的。当时一位音乐家演奏一个音符,他创造了一个不规则形状的声波,同样形状的波,只要音乐家持续演奏这个音符会不断重复。因此

小波变换网文精粹:小波:看森林,也看树木(一)

给你一囗甜甜゛ 提交于 2019-12-05 19:14:23
英文原名:Wavelets: Seeing the forest and the trees 转: https://blog.csdn.net/deepdsp/article/details/7253400 原:http://yswhu.bokee.com/viewdiary.10391865.html 一、前言 在1998年11月15日这一天,Walt Disney Pictures 和 Pixar Animation Studios一起发布了一部全部由计算机漫画而制的电影,名字叫《一只甲壳虫的生活》(A Bug’s life),这是Disney和Pixar的第二次合作,跟三年前制片人Toy Story的突破一样,它开创了一个新的视角。一位评论家说:“《一只甲壳虫的生活》有许多漂亮的视觉创新,有错综复杂的细节,会使得大人们跟小孩子一样,从开始到结束都在观看;而且还从一些新的、迄今没有的柔和光谱中折射出的搞笑颜色。” 只有最懂计算机图形学的常看电影的人才会提出许多数学建模的想法,这会使得在生动的蚂蚁故事中有可能发展所有特性,更不用说它们的许多结构,它们的无数的表情,还有它们跳跃、迁徙和围绕在一起鸣叫的方式。尽管这也出现了,一种特殊的建模技术使得它在电影中首次应用。一种计算机漫画方法是充分利用了一种叫做 小波 的数学程序的聚集性。 思考小波的一种方法是考虑我们的眼睛是怎样看世界的

小波变换教程(十七)

纵饮孤独 提交于 2019-12-04 15:54:01
离散小波变换(一) 1、为什么需要离散小波变换 虽然离散化的连续小波变换(即小波级数)使得连续小波变换的运算可以用计算机来实现,但这还不是真正的离散变换。事实上,小波级数仅仅是CWT的采样形式。即便是考虑到信号的重构,小波级数所包含的信息也是高度冗余的。这些冗余的信息同样会占用巨大的计算时间和资源。而离散小波变换(DWT)则不仅提供了信号分析和重构所需的足够信息,其运算量也大为减少。 相比CWT,DWT的实现要容易得多。本小节将介绍DWT的基本概念及其性质,以及用来实现其计算的算法。如前面的内容一样,会举一些应用实例来帮助理解DWT。 2、离散小波变换(DWT)历史 DWT的建立要追溯到1976年。当时,Croiser, Esteban, 和 Galand发明了一种分解离散时间信号的新技术。几乎在同时,Crochiere, Weber, 和 Flanagan在语音信号编码上也做了类似的工作。他们将其命名为子带编码。1983年,Burt定义了一种与子带编码非常类似的新方法,并取名为金字塔编码。现在,这两种编码方法都又称为 多分辨分析 。到1989年,Vetterli 和 Le Gall对子带编码方法进行了一些改进,并且去除了金字塔编码中的冗余。下面将会简要介绍子带编码。离散小波变换及多分辨分析理论的详细讨论可在很多相关的论文及专著中找到,这里不详细展开。 3、子带编码和多分辨分析