聚类算法之K-Means,K-Means++,elkan K-Means和MiniBatch K-Means算法流程
聚类问题是机器学习中无监督学习的典型代表,在数据分析、模式识别的很多实际问题中得到了应用。我们知道,分类问题是机器学习中最常见的一类问题,它的目标是确定一个物体所属的类别。分类问题和聚类问题一个最重要的区别在于分类问题有标签,学习过程实际就是程序不断学习各个标签特点的过程,而聚类问题是一种无监督学习问题,我们事先并不知道这些事物一共多少个类,每个事物的所属类别,我们需要让程序基于一定的规则,自动地将事物分为我们需要的类。 我们在进行聚类分析的时候,需要确定 无监督学习算法需要决定的三个问题: 1.分成几类? 2.样本之间的距离度量方式? 3.聚类策略? 下面,我们来看一些常用的聚类算法: 一、K-Means K-Means聚类又叫K均值聚类,是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。 K-Means算法过程: 1.输入数据 D = { x 1 , x 2 , x 3 , . . . , x m } D=