word2vec

Word2Vec: Number of Dimensions

烈酒焚心 提交于 2019-11-30 03:14:38
I am using Word2Vec with a dataset of roughly 11,000,000 tokens looking to do both word similarity (as part of synonym extraction for a downstream task) but I don't have a good sense of how many dimensions I should use with Word2Vec. Does anyone have a good heuristic for the range of dimensions to consider based on the number of tokens/sentences? Cylonmath Typical interval is between 100-300. I would say you need at least 50D to achieve lowest accuracy. If you pick lesser number of dimensions, you will start to lose properties of high dimensional spaces. If training time is not a big deal for

How to remove a word completely from a Word2Vec model in gensim?

北慕城南 提交于 2019-11-30 01:50:19
问题 Given a model, e.g. from gensim.models.word2vec import Word2Vec documents = ["Human machine interface for lab abc computer applications", "A survey of user opinion of computer system response time", "The EPS user interface management system", "System and human system engineering testing of EPS", "Relation of user perceived response time to error measurement", "The generation of random binary unordered trees", "The intersection graph of paths in trees", "Graph minors IV Widths of trees and

TensorFlow 机器学习秘籍中文第二版(初稿)

旧巷老猫 提交于 2019-11-29 22:36:39
TensorFlow 入门 介绍 TensorFlow 如何工作 声明变量和张量 使用占位符和变量 使用矩阵 声明操作符 实现激活函数 使用数据源 其他资源 TensorFlow 的方式 介绍 计算图中的操作 对嵌套操作分层 使用多个层 实现损失函数 实现反向传播 使用批量和随机训练 把所有东西结合在一起 评估模型 线性回归 介绍 使用矩阵逆方法 实现分解方法 学习 TensorFlow 线性回归方法 理解线性回归中的损失函数 实现 deming 回归 实现套索和岭回归 实现弹性网络回归 实现逻辑回归 支持向量机 介绍 使用线性 SVM 简化为线性回归 在 TensorFlow 中使用内核 实现非线性 SVM 实现多类 SVM 最近邻方法 介绍 使用最近邻 使用基于文本的距离 使用混合距离函数的计算 使用地址匹配的示例 使用最近邻进行图像识别 神经网络 介绍 实现操作门 使用门和激活函数 实现单层神经网络 实现不同的层 使用多层神经网络 改进线性模型的预测 学习玩井字棋 自然语言处理 介绍 使用词袋嵌入 实现 TF-IDF 使用 Skip-Gram 嵌入 使用 CBOW 嵌入 使用 word2vec 进行预测 使用 doc2vec 进行情绪分析 卷积神经网络 介绍 实现简单的 CNN 实现先进的 CNN 重新训练现有的 CNN 模型 应用 StyleNet 和

How to train Word2vec on very large datasets?

不羁岁月 提交于 2019-11-29 20:29:55
I am thinking of training word2vec on huge large scale data of more than 10 TB+ in size on web crawl dump. I personally trained c implementation GoogleNews-2012 dump (1.5gb) on my iMac took about 3 hours to train and generate vectors (impressed with speed). I did not try python implementation though :( I read somewhere that generating vectors on wiki dump (11gb) of 300 vector length takes about 9 days to generate. How to speed up word2vec? Do i need to use distributed models or what type of hardware i need to do it within 2-3 days? i have iMac with 8gb ram. Which one is faster? Gensim python

How to use word2vec to calculate the similarity distance by giving 2 words?

你。 提交于 2019-11-29 20:26:18
Word2vec is a open source tool to calculate the words distance provided by Google. It can be used by inputting a word and output the ranked word lists according to the similarity. E.g. Input: france Output: Word Cosine distance spain 0.678515 belgium 0.665923 netherlands 0.652428 italy 0.633130 switzerland 0.622323 luxembourg 0.610033 portugal 0.577154 russia 0.571507 germany 0.563291 catalonia 0.534176 However, what I need to do is to calculate the similarity distance by giving 2 words. If I give the 'france' and 'spain', how can I get the score 0.678515 without reading the whole words list

How to run tsne on word2vec created from gensim?

故事扮演 提交于 2019-11-29 10:13:28
问题 I want to visualize a word2vec created from gensim library. I tried sklearn but it seems I need to install a developer version to get it. I tried installing the developer version but that is not working on my machine . Is it possible to modify this code to visualize a word2vec model ? tsne_python 回答1: You don't need a developer version of scikit-learn - just install scikit-learn the usual way via pip or conda . To access the word vectors created by word2vec simply use the word dictionary as

Is it possible to re-train a word2vec model (e.g. GoogleNews-vectors-negative300.bin) from a corpus of sentences in python?

与世无争的帅哥 提交于 2019-11-29 08:31:04
问题 I am using pre-trained Google news dataset for getting word vectors by using Gensim library in python model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True) After loading the model I am converting training reviews sentence words into vectors #reading all sentences from training file with open('restaurantSentences', 'r') as infile: x_train = infile.readlines() #cleaning sentences x_train = [review_to_wordlist(review,remove_stopwords=True) for review in x_train

使用 DL4J 训练中文词向量

丶灬走出姿态 提交于 2019-11-29 04:08:38
目录 使用 DL4J 训练中文词向量 1 预处理 2 训练 3 调用 附录 - maven 依赖 使用 DL4J 训练中文词向量 1 预处理 对中文语料的预处理,主要包括:分词、去停用词以及一些根据实际场景制定的规则。 package ai.mole.test; import org.ansj.domain.Term; import org.ansj.splitWord.analysis.ToAnalysis; import org.nlpcn.commons.lang.tire.domain.Forest; import org.nlpcn.commons.lang.tire.library.Library; import java.io.*; import java.util.LinkedList; import java.util.List; import java.util.regex.Pattern; public class Preprocess { private static final Pattern NUMERIC_PATTERN = Pattern.compile("^[.\\d]+$"); private static final Pattern ENGLISH_WORD_PATTERN = Pattern.compile("^[a-z]+$");

Spark Word2vec vector mathematics

我怕爱的太早我们不能终老 提交于 2019-11-29 01:00:25
问题 I was looking at the example of Spark site for Word2Vec: val input = sc.textFile("text8").map(line => line.split(" ").toSeq) val word2vec = new Word2Vec() val model = word2vec.fit(input) val synonyms = model.findSynonyms("country name here", 40) How do I do the interesting vector such as king - man + woman = queen. I can use model.getVectors, but not sure how to proceed further. 回答1: Here is an example in pyspark , which I guess is straightforward to port to Scala - the key is the use of

Word2Vec: Number of Dimensions

烂漫一生 提交于 2019-11-29 00:54:11
问题 I am using Word2Vec with a dataset of roughly 11,000,000 tokens looking to do both word similarity (as part of synonym extraction for a downstream task) but I don't have a good sense of how many dimensions I should use with Word2Vec. Does anyone have a good heuristic for the range of dimensions to consider based on the number of tokens/sentences? 回答1: Typical interval is between 100-300. I would say you need at least 50D to achieve lowest accuracy. If you pick lesser number of dimensions, you