word2vec

How to load a pre-trained Word2vec MODEL File and reuse it?

百般思念 提交于 2020-01-02 03:00:11
问题 I want to use a pre-trained word2vec model, but I don't know how to load it in python. This file is a MODEL file (703 MB). It can be downloaded here: http://devmount.github.io/GermanWordEmbeddings/ 回答1: just for loading import gensim # Load pre-trained Word2Vec model. model = gensim.models.Word2Vec.load("modelName.model") now you can train the model as usual. also, if you want to be able to save it and retrain it multiple times, here's what you should do model.train(//insert proper parameters

Generator is not an iterator?

不羁岁月 提交于 2020-01-01 07:56:46
问题 I have an generator (a function that yields stuff), but when trying to pass it to gensim.Word2Vec I get the following error: TypeError: You can't pass a generator as the sentences argument. Try an iterator. Isn't a generator a kind of iterator? If not, how do I make an iterator from it? Looking at the library code, it seems to simply iterate over sentences like for x in enumerate(sentences) , which works just fine with my generator. What is causing the error then? 回答1: Generator is exhausted

How to use vector representation of words (as obtained from Word2Vec,etc) as features for a classifier?

我们两清 提交于 2020-01-01 04:11:45
问题 I am familiar with using BOW features for text classification, wherein we first find the size of the vocabulary for the corpus which becomes the size of our feature vector. For each sentence/document, and for all its constituent words, we then put 0/1 depending on the absence/presence of that word in that sentence/document. However, now that I am trying to use vector representation of each word, is creating a global vocabulary essential? 回答1: Suppose the size of the vectors is N (usually

使用机器学习做文本分类知识点总结

孤街浪徒 提交于 2020-01-01 02:04:02
文本分类主要流程 获取数据集 使用爬虫从网上获取。 下载某些网站整理好的数据集。 公司内部数据资源。 数据预处理 数据预处理是按照需求将数据整理出不同的分类,分类预测的源头是经过预处理的数据,所以数据预处理非常重要,会影响到后期文本分类的好坏。 预处理主要分为以下几个步骤: 将数据集按类别做好不同分类 将分类好的数据集分为训练集和测试集 去除数据集中的空字段或对空字段添加标识 对文本进行分词 1. 加载自己需要的分词词典和停用词(使后期模型更加简单、准确) 2. 去除无用的字符符号 3. 进行分词 特征提取 对于文本分类的特征提取目前主要有Bag of Words(词袋法)、TfIdf、Word2Vec、Doc2Vec。 词袋法介绍 对于每一个训练文本,它只考虑每种词汇在该训练文本中出现的频率。没有考虑到单词的顺序,忽略了单词的语义信息。 TfIdf算法介绍 除了考量某词汇在文本出现的频率,还关注包含这个词汇的所有文本的数量,能够削减高频没有意义的词汇出现带来的影响,挖掘更有意义的特征,相对词袋法来说,文本条目越多,Tfidf的效果会越显著。缺点也是没有考虑到单词的顺序。 Word2Vec算法介绍 Word2Vec的优点就是考虑了一个句子中词与词之间的关系,关于两个词的关系亲疏,word2vec从两个角度去考虑。第一,如果两个词意思比较相近,那么他们的向量夹角或者距离

TensorFlow Embedding Lookup

笑着哭i 提交于 2019-12-31 08:39:08
问题 I am trying to learn how to build RNN for Speech Recognition using TensorFlow. As a start, I wanted to try out some example models put up on TensorFlow page TF-RNN As per what was advised, I had taken some time to understand how word IDs are embedded into a dense representation (Vector Representation) by working through the basic version of word2vec model code. I had an understanding of what tf.nn.embedding_lookup actually does, until I actually encountered the same function being used with

SpaCy: how to load Google news word2vec vectors?

落花浮王杯 提交于 2019-12-30 00:07:04
问题 I've tried several methods of loading the google news word2vec vectors (https://code.google.com/archive/p/word2vec/): en_nlp = spacy.load('en',vector=False) en_nlp.vocab.load_vectors_from_bin_loc('GoogleNews-vectors-negative300.bin') The above gives: MemoryError: Error assigning 18446744072820359357 bytes I've also tried with the .gz packed vectors; or by loading and saving them with gensim to a new format: from gensim.models.word2vec import Word2Vec model = Word2Vec.load_word2vec_format(

SpaCy: how to load Google news word2vec vectors?

混江龙づ霸主 提交于 2019-12-30 00:05:28
问题 I've tried several methods of loading the google news word2vec vectors (https://code.google.com/archive/p/word2vec/): en_nlp = spacy.load('en',vector=False) en_nlp.vocab.load_vectors_from_bin_loc('GoogleNews-vectors-negative300.bin') The above gives: MemoryError: Error assigning 18446744072820359357 bytes I've also tried with the .gz packed vectors; or by loading and saving them with gensim to a new format: from gensim.models.word2vec import Word2Vec model = Word2Vec.load_word2vec_format(

Using pre-trained word2vec with LSTM for word generation

拥有回忆 提交于 2019-12-28 03:24:08
问题 LSTM/RNN can be used for text generation. This shows way to use pre-trained GloVe word embeddings for Keras model. How to use pre-trained Word2Vec word embeddings with Keras LSTM model? This post did help. How to predict / generate next word when the model is provided with the sequence of words as its input? Sample approach tried: # Sample code to prepare word2vec word embeddings import gensim documents = ["Human machine interface for lab abc computer applications", "A survey of user opinion

【深度学习系列】PaddlePaddle垃圾邮件处理实战(一)

白昼怎懂夜的黑 提交于 2019-12-27 14:42:15
PaddlePaddle垃圾邮件处理实战(一) 背景介绍   在我们日常生活中,经常会受到各种垃圾邮件,譬如来自商家的广告、打折促销信息、澳门博彩邮件、理财推广信息等,一般来说邮件客户端都会设置一定的关键词屏蔽这种垃圾邮件,或者对邮件进行归类,但是总会有一些漏网之鱼。   不过,自己手动做一个垃圾邮件分类器也并不是什么难事。传统的机器学习算法通常会采用朴素贝叶斯、支持向量机等算法对垃圾邮件进行过滤,今天我们主要讲如何用PaddlePaddle手写一个垃圾邮件分类器。当然,在讲PaddlePaddle做垃圾邮件处理之前,先回顾一下传统的机器学习算法是如何对垃圾邮件进行分类的。 了解数据集   首先先了解一下今天的数据集:trec06c。trec06c是一个公开的垃圾邮件语料库,由国际文本检索会议提供,分为英文数据集(trec06p)和中文数据集(trec06c),其中所含的邮件均来源于真实邮件保留了邮件的原有格式和内容。 文件下载地址: trec06c 文件格式: trec06c │ └───data │ │ 000 │ │ 001 │ │ ... │ └───215 └───delay │ │ index └───full │ │ index 文件内容: 垃圾邮件示例:本公司有部分普通发票(商品销售发票)增值税发票及海关代征增值税专用缴款书及其它服务行业发票,公路、内河运输发票

论文阅读:DeepWalk

只愿长相守 提交于 2019-12-25 11:10:57
DeepWalk[1]这篇文章挺有意思的, 主要是讲怎么 用Deep Learning的方法学图结构 , 学出每个节点的隐含表示(比较像LSA、LDA、word2vec那种)。 发在了14年的KDD上, 咱们看到的是预览版本。 github地址作者也放出来了, github地址 下面大致讲一下文章是怎么弄得, 是个阅读笔记。 一、 介绍,优点 先说概念, 学出来什么样。 图a是输入图, 图b是输出。 例子是将一个输入的图转化成了2维表示。 输入是图和图的自身结构,输出是二维表示。 例子应该是做的比较好的, 基本将本来是cluster的弄得也比较近, 不过这点比较容易。 优点:1) 与传统cluster、降维方法比, 这个方法的优点是 可以调试 , 也就代表着这东西可以堆数据, 因而在 知识图谱,在社交网络 上是有应用的。 2) 与传统cluster比 能学到维度 ,能进一步利用。 3) 与降维比, 其实没什么优点, 但是图结构本身没有什么比较正常、有可以 大规模使用 的降维方法。 应用: 1. 社交网络学习特征;2. 知识图谱学习表示;3. 推荐系统学习低维度关联性。 二、 随机游走和语言模型 1. 随机游走 假设节点$v_i$处的随机游走是$W_{v_i}$,则全过程表示为$W_{v_i}^1,W_{v_i}^2,W_{v_i}^3,\cdots,W_{v_i}^k$。