【深度学习基础】从零开始的炼丹生活07——深度模型中的优化
往期回顾: 04——从传统机器学习走向深度学习 05——深度前馈网络、神经网络概述 06——深度学习中的正则化 介绍了神经网络的基本构件和正则化策略之后,学习一下深度模型中的优化。先说一说传统的纯优化与机器学习中的优化的异同,再介绍一下神经网络中优化的挑战,最后说说基本的优化算法。(参考《深度学习》第8章) 一、机器学习中的优化 传统的优化方法是纯优化最小化目标 J 本身,而机器学习的优化是间接作用的。在机器学习问题中,我们关注某些性能度量 P ,其定义于测试集上并且是不可解的。因此机器学习希望通过降低代价函数 J(θ)来间接提高 P 。 1. 经验风险最小化 机器学习算法的目标是降低期望泛化误差 J ∗ ( θ ) = E ( x , y ) ∼ p d a t a L ( f ( x ; θ ) , y ) J^*(\theta)=\mathbb E_{(\bold {x,y})\sim p_{data}}L(f(x;\theta),y) J ∗ ( θ ) = E ( x , y ) ∼ p d a t a L ( f ( x ; θ ) , y ) 这被称为 风险 。此时数据取自真实的潜在分布,然而,我们遇到的问题通常并不清楚真实分布,只知道训练集中的样本。 我们将机器学习中的优化转换回一个优化问题的最简单方法就是最小化训练集上的期望损失,以训练集上的经验分布 p