PixelNet: Representation of the pixels, by the pixels, and for the pixels----2017论文翻译解读
PixelNet: Representation of the pixels, by the pixels, and for the pixels. 图1.我们的框架通过对架构(最后一层)和训练过程(历元)的微小修改,将其应用于三个不同的像素预测问题。 请注意,我们的方法为分割(左),表面法线估计(中)和边缘检测(右)的语义边界恢复精细的细节。 Abstract 我们探索了一般像素级预测问题的设计原理,从低级边缘检测到中级表面法线估计到高级语义分割。诸如全卷积网络(FCN)之类的卷积预测因子通过通过卷积处理利用相邻像素的空间冗余而获得了非凡的成功。尽管计算效率高,但我们指出,由于 空间冗余限制了从相邻像素学习的信息 ,因此这些方法在学习过程中在统计上并不是有效的。 我们证明了像素的分层采样可以使(1)在批量更新过程中增加多样性,从而加快学习速度; (2)探索复杂的非线性预测因子,提高准确性; (3)有效地训练最先进的模型tabula rasa(即“从头开始”)以完成各种像素标记任务。 我们的单一体系结构可为PASCAL-Context数据集上的语义分割,NYUDv2深度数据集上的表面法线估计以及BSDS上的边缘检测提供最新结果。 1.Introduction 许多计算机视觉问题可以表述为密集的逐像素预测问题。 其中包括边缘检测[21、64、94]和光流[5、30、86]等低级任务