矩阵特征值分解与奇异值分解含义解析及应用
特征值与特征向量的几何意义 矩阵的乘法是什么,别只告诉我只是“前一个矩阵的行乘以后一个矩阵的列”,还会一点的可能还会说“前一个矩阵的列数等于后一个矩阵的行数才能相乘”,然而,这里却会和你说——那都是表象。 矩阵乘法真正的含义是变换,我们学《线性代数》一开始就学行变换列变换,那才是线代的核心——别会了点猫腻就忘了本——对,矩阵乘法 就是线性变换,若以其中一个向量A为中心,则B的作用主要是使A发生如下变化: 1、伸缩 clf; A = [0, 1, 1, 0, 0;... 1, 1, 0, 0, 1]; % 原空间 B = [3 0; 0 2]; % 线性变换矩阵 plot(A(1,:),A(2,:), '-*');hold on grid on;axis([0 3 0 3]); gtext('变换前'); Y = B * A; plot(Y(1,:),Y(2,:), '-r*'); grid on;axis([0 3 0 3]); gtext('变换后'); 从上图可知,y方向进行了2倍的拉伸,x方向进行了3倍的拉伸,这就是B=[3 0; 0 2]的功劳,3和2就是伸缩比例。请注意,这时B除了对角线元素为各个维度的倍数外,非正对角线元素都为0,因为下面将要看到,对角线元素非0则将会发生切变及旋转的效果。 2、切变 clf; A = [0, 1, 1, 0, 0;... 1, 1, 0