目标检测算法基础介绍
文章目录 1. 目标检测问题定义 1.1 目标检测定义 1.2 目标检测vs图像分类 1.3 目标检测vs目标分割 2. 目标检测问题方法 2.1 传统目标检测方法到深度学习目标检测方法的变迁 2.2 算法基本流程 2.3 传统目标检测方法 2.4 深度学习目标检测方法 2.5 传统目标检测方法VS深度学习目标检测方法 2.6 目标检测应用场景 3. 传统目标检测算法 3.1 综述 3.2 Viola-Jones 3.3 HOG+SVM 3.4 DPM 3.5 NMS(非极大值抑制算法) 4. 基于深度学习的目标检测算法 4.1 Two-stage基本介绍 4.1.1 概述 4.1.2 two-stage基本流程: 4.1.3 two-stage常见算法 4.2 Two-stage核心组件 4.2.1 CNN网络 4.2.2 RPN网络 4.3 One-stage基本介绍 4.3.1 One-stage 综述 4.3.2 One-stage基本流程 4.3.3 One-stage常见算法 4.4 One-stage核心组件 4.4.1 CNN网络 4.4.2 回归网络 4.4.3 回归网络预测过程 4.5 One-stage VS Two-stage 1. 目标检测问题定义 1.1 目标检测定义 目标检测是在图片中对 可变数量 的目标进行分类和查找。 主要难点: 目标种类与数量问题