利用LSTM(长短期记忆网络)来处理脑电数据
目录 LSTM 原理介绍 LSTM的核心思想 一步一步理解LSTM 代码案例 本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195 Rose小哥今天介绍一下用LSTM来处理脑电数据。 LSTM 原理介绍 LSTMs(Long Short Term Memory networks,长短期记忆网络)简称LSTMs,很多地方用LSTM来指代它。本文也使用LSTM来表示长短期记忆网络。LSTM是一种特殊的RNN网络(循环神经网络)。想要说清楚LSTM,就很有必要先介绍一下RNN。下面我将简略介绍一下RNN原理。 所有循环神经网络都具有神经网络的重复模块链的形式。在标准的RNN中,该重复模块将具有非常简单的结构,比如单个tanh层。标准的RNN网络如下图所示: LSTM也具有这种链式结构,不过它的重复单元与标准RNN网络里的单元只有一个网络层不同,它的内部有四个网络层。LSTM的结构如下图所示。 在解释LSTM的详细结构时先定义一下图中各个符号的含义,符号包括下面几种,图中黄色类似于CNN里的激活函数操作,粉色圆圈表示点操作,单箭头表示数据流向,箭头合并表示向量的合并(concat)操作,箭头分叉表示向量的拷贝操作。 LSTM的核心思想 LSTM的核心是细胞状态,用贯穿细胞的水平线表示。 细胞状态像传送带一样