spark读取kafka数据流提供了两种方式createDstream和createDirectStream。 两者区别如下: 1、KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] ) 使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在 Spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDFS上 A、创建一个receiver来对kafka进行定时拉取数据,ssc的rdd分区和kafka的topic分区不是一个概念,故如果增加特定主体分区数仅仅是增加一个receiver中消费topic的线程数,并不增加spark的并行处理数据数量 B、对于不同的group和topic可以使用多个receivers创建不同的DStream C、如果启用了WAL,需要设置存储级别,即KafkaUtils.createStream(….,StorageLevel.MEMORY_AND_DISK_SER) 2.KafkaUtils.createDirectStream