Estimating high resolution images from lower ones using a Keras model based on ConvLSTM2D
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I'm trying to use the following ConvLSTM2D architecture to estimate high resolution image sequences from low resolution ones: import numpy as np, scipy.ndimage, matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, ConvLSTM2D, MaxPooling2D, UpSampling2D from sklearn.metrics import accuracy_score, confusion_matrix, cohen_kappa_score from sklearn.preprocessing import MinMaxScaler, StandardScaler np.random.seed(123) raw = np.arange(96)