《利用python进行数据分析》读书笔记--第五章 pandas入门
pandas是本书后续内容的首选库。pandas可以满足以下需求: 具备按轴自动或显式数据对齐功能的数据结构。这可以防止许多由于数据未对齐以及来自不同数据源(索引方式不同)的数据而导致的常见错误。. 集成时间序列功能 既能处理时间序列数据也能处理非时间序列数据的数据结构 数学运算和简约(比如对某个轴求和)可以根据不同的元数据(轴编号)执行 灵活处理缺失数据 合并及其他出现在常见数据库(例如基于SQL的)中的关系型运算 1、pandas数据结构介绍 两个数据结构:Series和DataFrame。Series是一种类似于以为NumPy数组的对象,它由一组数据(各种NumPy数据类型)和与之相关的一组数据标签(即索引)组成的。可以用index和values分别规定索引和值。如果不规定索引,会自动创建 0 到 N-1 索引。 #-*- encoding:utf-8 -*- import numpy as np import pandas as pd from pandas import Series,DataFrame #Series可以设置index,有点像字典,用index索引 obj = Series([1,2,3],index=['a','b','c']) #print obj['a'] #也就是说,可以用字典直接创建Series dic = dict(key = ['a','b