各个排序算法的时间复杂度和稳定性总结
排序图表: 一、插入排序 每次将一个待排序的数据,跟前面已经有序的序列的数字一一比较找到自己合适的位置,插入到序列中,直到全部数据插入完成。 二、希尔排序 先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序,然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小)时,再对全体元素进行一次直接插入排序。由于希尔排序是对相隔若干距离的数据进行直接插入排序,因此可以形象的称希尔排序为“跳着插” 三、冒泡排序 通过交换使相邻的两个数变成小数在前大数在后,这样每次遍历后,最大的数就“沉”到最后面了。重复N次即可以使数组有序。 冒泡排序改进1:在某次遍历中如果没有数据交换,说明整个数组已经有序。因此通过设置标志位来记录此次遍历有无数据交换就可以判断是否要继续循环。 冒泡排序改进2:记录某次遍历时最后发生数据交换的位置,这个位置之后的数据显然已经有序了。因此通过记录最后发生数据交换的位置就可以确定下次循环的范围了。 四、快速排序 “挖坑填数+分治法”,首先令i =L; j = R; 将a[i]挖出形成第一个坑,称a[i]为基准数。然后j--由后向前找比基准数小的数,找到后挖出此数填入前一个坑a[i]中,再i++由前向后找比基准数大的数,找到后也挖出此数填到前一个坑a[j]中。重复进行这种“挖坑填数”直到i==j。再将基准数填入a[i