基于忆阻器的神经网络应用研究
来源:文章转载自期刊《微纳电子与智能制造》,作者:陈 佳,潘文谦,秦一凡,王 峰,李灏阳,李 祎,缪向水。 摘 要 基于忆阻突触器件的硬件神经网络是神经形态计算的重要发展方向,是后摩尔时代突破传统冯·诺依曼计算架构的有力技术候选。综述了国内外忆阻硬件神经网络的近期发展现状,从器件发展和神经网络两个方面,详细阐述了忆阻器这一新兴信息器件在神经形态计算中所发挥的角色作用,讨论了依然存在的关键问题和技术挑战。忆阻器为实现存算一体化架构和超越摩尔定律提供了技术障碍突破的可行方案。 引 言 在当今数据量爆炸式增长的背景下,传统计算架构遭遇冯·诺依曼瓶颈,晶体管微缩,摩尔定律已难以延续,这已成为继续提升计算系统性能过程中难以克服的技术障碍[1-4]。神经形态计算概念的提出无疑是可以实现技术突破的一大曙光,人脑信息处理系统的复杂程度是最先进的超级计算机也无法媲美的。在已报道的神经形态计算架构芯片中,其计算能力显著提高,并且体积和能耗远小得多。因此,神经形态计算架构的发展在软件和硬件领域都被极度重视,有望替换当前计算系统架构。 而在众多用于实现神经形态计算的硬件元件中,忆阻器以其高集成度、低功耗、可模拟突触可塑性等特点成为一大有力备选。忆阻器早在1971年就由蔡少棠教授[5]以第4种无源基本电路元件的概念提出,2008年由惠普实验室首次在 Pt/TiO2/Pt三明治叠层结构中通过实验验证[6]