AI 发展方向大争论:混合AI ?强化学习 ?将实际知识和常识整合到AI中 ?
一个仿人机器人的延伸手。机器人常常使用强化学习来加以训练 来源:云头条 作者:Ben Dickson是一名软件工程师,还是探讨技术在如何解决和带来问题的TechTalks博客的创始人。 2010年代对于AI界来说意义重大,这归功于深度学习领域取得了惊人的进步,AI的这个分支因收集、存储和处理大量数据的能力不断增强而变得切实可行。如今,深度学习不仅是一个科学研究课题,还是许多日常应用系统的一个关键组成部分。 但是十年来的研究和应用清楚地表明,在当前状态下,深度学习并不是克服打造智能与人类相当的AI这一艰巨挑战的最终解决方案。 我们需要怎样才能将AI推到下一个高度?需要更多的数据和更庞大的神经网络?需要新的深度学习算法?还是需要深度学习之外的方法? 这个话题已在AI社区引起了激烈的讨论,也是上周举行的在线讨论Montreal.AI的中心话题。背景和学科迥异的科学家们参加了这场名为《AI辩论2——推动AI前进:一种跨学科的方法》的大辩论。 混合AI 认知科学家Gary Marcus共同主持了这场辩论,他重申了深度学习存在的几大缺点,包括数据需求过高、将知识迁移到其他领域的能力偏低、不透明以及缺乏推理和知识表征。 Marcus一向公开炮轰纯深度学习的方法,他在2020年初发表了一篇论文,他在论文中建议采用一种将学习算法与基于规则的软件相结合的混合方法。