构建对象检测模型
作者|ALAKH SETHI 编译|VK 来源|Analytics Vidhya 目标检测 我喜欢深度学习。坦率地说,这是一个有大量技术和框架可供倾注和学习的广阔领域。当我看到现实世界中的应用程序,如面部识别和板球跟踪等时,建立深度学习和计算机视觉模型的真正兴奋就来了。 我最喜欢的计算机视觉和深入学习的概念之一是目标检测。建立一个模型的能力,可以通过图像,告诉我什么样的物体存在! 当人类看到一幅图像时,我们在几秒钟内就能识别出感兴趣的物体。机器不是这样的。因此,目标检测是一个在图像中定位目标实例的计算机视觉问题。 好消息是,对象检测应用程序比以往任何时候都更容易开发。目前的方法侧重于端到端的管道,这大大提高了性能,也有助于开发实时用例。 目录 一种通用的目标检测框架 什么是API?为什么我们需要一个API? TensorFlow对象检测API 一种通用的目标检测框架 通常,我们在构建对象检测框架时遵循三个步骤: 首先,使用深度学习模型或算法在图像中生成一组的边界框(即对象定位) 接下来,为每个边界框提取视觉特征。它们将根据视觉特征进行评估,并确定框中是否存在以及存在哪些对象 在最后的后处理步骤中,重叠的框合并为一个边界框(即非最大抑制) 就这样,你已经准备好了你的第一个目标检测框架! 什么是API?为什么我们需要一个API? API代表应用程序编程接口