用Python可视化卷积神经网络
作者|FAIZAN SHAIKH 编译|VK 来源|Analytics Vidhya 介绍 深入学习中最具争议的话题之一是如何解释和理解一个经过训练的模型——特别是在医疗等高风险行业的背景下。“黑匣子”一词经常与深度学习算法联系在一起。如果我们不能解释模型是如何工作的,我们怎么能相信模型的结果呢?这是个合理的问题。 以一个为检测癌症而训练的深度学习模型为例。这个模型告诉你,它99%确定它已经检测到癌症,但它并没有告诉你为什么或者如何做出这个决定。 在核磁共振扫描中找到了重要线索吗?或者只是扫描上的污点被错误地检测为肿瘤?这是病人生死攸关的问题,医生犯了大错后果很严重。 在本文中,我们将探讨如何可视化卷积神经网络(CNN),这是一种深入学习的体系结构,特别用于最先进的基于图像的应用程序。我们将了解可视化CNN模型的重要性,以及可视化它们的方法。我们还将看一个用例,它将帮助你更好地理解这个概念。 目录 CNN模型可视化的重要性 可视化方法 基本方法 绘制模型架构 可视化滤波器 基于激活的方法 最大激活 图像遮挡 基于梯度的方法 显著图 基于梯度的类激活图 CNN模型可视化的重要性 正如我们在上面的癌症肿瘤例子中所看到的,我们知道我们的模型在做什么,以及它如何对预测做出决定,这是绝对重要的。通常,下面列出的原因是一个深度学习实践者要记住的最重要的一点: 了解模型的工作原理 超参数调整