pointnet++之scannet/train.py
1.作者可能把scannet数据集分成了训练集和测试集并处理成了.pickle文件。 2.在代码运行过程中,作者从.pickle文件中读出训练集1201个场景的x、y、z坐标和测试集312个场景的x、y、z坐标。 3.考虑把点存到.txt文件中,用cloudcompare可视化一下。 2--地板 3--椅子 8--沙发 20--靠枕 单独存入训练数据到txt文件 : TRAIN_DATASET = scannet_dataset.ScannetDataset( root=DATA_PATH , npoints=NUM_POINT , split= 'train') for i in range(len(TRAIN_DATASET.scene_points_list)): filename = '' .join([ " TRAIN_DATASET_ " ,str(i+1), ' .txt ' ]) np.savetxt(filename, TRAIN_DATASET.scene_points_list[i],fmt = " %.8f " , delimiter= ' , ' ) 单独存入训练数据的标签到txt文件 : for i in range(len(TRAIN_DATASET.semantic_labels_list)): filename = '' .join([ "