从一篇ICLR论文看脑启发AI的发展之路
此文从我的ICLR2020工作展开看脑启发AI和通用智能算法的发展路径,集合了我过去一年的演讲和思考内容。 当下的深度学习日子越来越不好过,自动驾驶,智能对话都在陷入一种人工智能不智能的怪圈, 即使最火的CV,其实也是需要大量数据填补的人工智障。 这些困难的根本,在于人工智能不具备人的智能的基础, 而只是模仿了人的思维能力的细节,也就是感知能力。我们来回顾这个人工智能进化的历史 。 首先, 人工智能经历果三个基本范式 :符号主义, 统计学习, 连接主义。 符号主义: 模拟人的逻辑, 如何把人的逻辑和知识用符号穿起来 。符号主义的本质 = 符号的运算 统计学习: 模拟人类统计学习的过程, 如何从大量的实践总结出有效的特征, 然后根据这些特征的先后重要性排列连接成决策树 。 连接主义: 人类模拟自身大脑的结构,提炼出网络的结构。 然后我们回顾连接主义发展的历史,连接主义的发展可谓三起三落, 所谓起都是因为借鉴了对生物大脑的某个理解而进步, 而衰都是因为达不到人们的预期而衰。 1, 第一次合作: 深度学习的前身-感知机。Warren McCulloch 和 WalterPitts在1943 提出而来神经元的模型, 这个模型类似于某种二极管或逻辑门电路。 事实上, 人们很快发现感知机的学习有巨大的局限性, Minksky等一批AI早期大师发现感知机无法执行“抑或”这个非常基本的逻辑运算