keras的mnist跑起来
异或问题是神经网络解决的最基本的问题,代码为 from keras.models import Sequential import keras.layers as KL #import numpy as np import pdb INPUTS = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) #输入为np.array()类型 OUTPUTS = np.array([[0], [1], [1], [0]]) model = Sequential() #pdb.set_trace() model.add(KL.Dense(units=64, activation='relu',input_shape=(2,)))#2为输入个数 model.add(KL.Dense(units=64, activation='relu')) model.add(KL.Dense(units=1, activation='sigmoid'))#1为输出个数 model.compile(loss='binary_crossentropy', #采用binary_crosssentropy训练 optimizer='sgd', metrics=['accuracy']) model.fit(INPUTS, OUTPUTS, epochs=1000, batch