rdd

spark笔记01

左心房为你撑大大i 提交于 2019-11-29 18:22:56
day7 hadoop 离线数据分析 批量; spark 【spark】 * 环境配置: 安装spark - Local本地模式 ok * spark学习 @Scala环境: 1 shell交互环境 启动:spark-shell;(默认进入且自带): 命令学习: 实验案例: 1 wordcount: textFile("input"):读取本地文件input文件夹数据; flatMap(_.split(" ")):压平操作,按照空格分割符将一行数据映射成一个个单词; map((_,1)):对每一个元素操作,将单词映射为元组; reduceByKey(_+_):按照key将值进行聚合,相加; collect:将数据收集到Driver端展示。 *** RDD: 1 RDD认识: 概念认知: 分布式对象集合; 本质上是一个只读的分区记录集合,每个RDD可以分成多个分区, 每个分区就是一个数据集片段, 并且一个RDD的不同分区可以被保存到集群中不同的节点上, 从而可以在集群中的不同节点上进行并行计算 弹性数据集; RDD提供了一种高度受限的共享内存模型????; RDD提供了一组丰富的操作以支持常见的数据运算; 只读 操作理解: 创建: 转换:理解 - 输入RDD,输出RDD;存在“父子”依赖关系 具体:父子RDD分区的对应关系; 行动:理解 - 输入RDD,输出值; 官方性名词理解:

Python3实战Spark大数据分析及调度

旧城冷巷雨未停 提交于 2019-11-29 17:26:14
Python3实战Spark大数据分析及调度 搜索QQ号直接加群获取其它学习资料:715301384 部分课程截图: 链接:https://pan.baidu.com/s/12VDmdhN4hr7ypdKTJvvgKg 提取码:cv9z PS:免费分享,若点击链接无法获取到资料,若如若链接失效请加群 其它 资源在群里,私聊管理员即可免费领取;群——715301384,点击加群 ,或扫描二维码 第1章 课程介绍 课程介绍 1-1 PySpark导学 试看 1-2 OOTB环境演示 第2章 实战环境搭建 工欲善其事必先利其器,本章讲述JDK、Scala、Hadoop、Maven、Python3以及Spark源码编译及部署 2-1 -课程目录 2-2 -Java环境搭建 2-3 -Scala环境搭建 2-4 -Hadoop环境搭建 2-5 -Maven环境搭建 2-6 -Python3环境部署 2-7 -Spark源码编译及部署 第3章 Spark Core核心RDD 本章详细讲解RDD是什么以及特性(面试常考)、Spark中两个核心类SparkContext和SparkConf、pyspark启动脚本分析、RDD的创建方式以及如何使用IDE开发Python Spark应用程序并提交到服务器上运行 3-1 -课程目录 3-2 -RDD是什么 3-3 -通过电影描述集群的强大之处 3-4

Spark RDD's - how do they work

拥有回忆 提交于 2019-11-29 16:29:06
问题 I have a small Scala program that runs fine on a single-node. However, I am scaling it out so it runs on multiple nodes. This is my first such attempt. I am just trying to understand how the RDDs work in Spark so this question is based around theory and may not be 100% correct. Let's say I create an RDD: val rdd = sc.textFile(file) Now once I've done that, does that mean that the file at file is now partitioned across the nodes (assuming all nodes have access to the file path)? Secondly, I

Lazy foreach on a Spark RDD

吃可爱长大的小学妹 提交于 2019-11-29 16:06:35
I have a big RDD of Strings (obtained through a union of several sc.textFile(...)) . I now want to search for a given string in that RDD, and I want the search to stop when a "good enough" match has been found. I could retrofit foreach , or filter , or map for this purpose, but all of these will iterate through every element in that RDD, regardless of whether the match has been reached. Is there a way to short-circuit this process and avoid iterating through the whole RDD? zero323 I could retrofit foreach, or filter, or map for this purpose, but all of these will iterate through every element

How to convert Spark RDD to pandas dataframe in ipython?

浪尽此生 提交于 2019-11-29 15:58:44
问题 I have a RDD and I want to convert it to pandas dataframe . I know that to convert and RDD to a normal dataframe we can do df = rdd1.toDF() But I want to convert the RDD to pandas dataframe and not a normal dataframe . How can I do it? 回答1: You can use function toPandas(): Returns the contents of this DataFrame as Pandas pandas.DataFrame. This is only available if Pandas is installed and available. >>> df.toPandas() age name 0 2 Alice 1 5 Bob 回答2: You'll have to use a Spark DataFrame as an

Performance impact of RDD API vs UDFs mixed with DataFrame API

ⅰ亾dé卋堺 提交于 2019-11-29 15:39:53
问题 (Scala-specific question.) While Spark docs encourage the use of DataFrame API where possible, if DataFrame API is insufficient, the choice is usually between falling back to RDD API or using UDFs. Is there inherent performance difference between these two alternatives? RDD and UDF are similar in that neither of them can benefit from Catalyst and Tungsten optimizations. Is there any other overhead, and if there is, does it differ between the two approaches? To give a specific example, let's

GC调优在Spark应用中的实践

心不动则不痛 提交于 2019-11-29 15:12:59
Spark是时下非常热门的大数据计算框架,以其卓越的性能优势、独特的架构、易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用。与Hadoop、HBase生态圈的众多项目一样,Spark的运行离不开JVM的支持。由于Spark立足于内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制(GC)。并且同时,它也支持兼容批处理和流式处理,对于程序吞吐量和延迟都有较高要求,因此GC参数的调优在Spark应用实践中显得尤为重要。本文主要讲述如何针对Spark应用程序配置JVM的垃圾回收器,并从实际案例出发,剖析如何进行GC调优,进一步提升Spark应用的性能。 问题介绍 随着Spark在工业界得到广泛使用,Spark应用稳定性以及性能调优问题不可避免地引起了用户的关注。由于Spark的特色在于内存计算,我们在部署Spark集群时,动辄使用超过100GB的内存作为Heap空间,这在传统的Java应用中是比较少见的。在广泛的合作过程中,确实有很多用户向我们抱怨运行Spark应用时GC所带来的各种问题。例如垃圾回收时间久、程序长时间无响应,甚至造成程序崩溃或者作业失败。对此,我们该怎样调试Spark应用的垃圾收集器呢?在本文中,我们从应用实例出发,结合具体问题场景,探讨了Spark应用的GC调优方法。 按照经验来说,当我们配置垃圾收集器时,主要有两种策略—

Apache Spark's RDD splitting according to the particular size

爱⌒轻易说出口 提交于 2019-11-29 14:47:50
I am trying to read strings from a text file, but I want to limit each line according to a particular size. For example; Here is my representing the file. aaaaa\nbbb\nccccc When trying to read this file by sc.textFile, RDD would appear this one. scala> val rdd = sc.textFile("textFile") scala> rdd.collect res1: Array[String] = Array(aaaaa, bbb, ccccc) But I want to limit the size of this RDD. For example, if the limit is 3, then I should get like this one. Array[String] = Array(aaa, aab, bbc, ccc, c) What is the best performance way to do that? zero323 Not a particularly efficient solution (not

Spark学习之路Spark之RDD

眉间皱痕 提交于 2019-11-29 14:08:29
Spark学习之路Spark之RDD 目录 一、RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做 弹性分布式数据集 , 是Spark中最基本的数据抽象 ,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。 (2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。 (3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。 (4)一个Partitioner

How to force Spark to evaluate DataFrame operations inline

耗尽温柔 提交于 2019-11-29 13:50:51
According to the Spark RDD docs : All transformations in Spark are lazy, in that they do not compute their results right away...This design enables Spark to run more efficiently. There are times when I need to do certain operations on my dataframes right then and now . But because dataframe ops are " lazily evaluated " (per above), when I write these operations in the code, there's very little guarantee that Spark will actually execute those operations inline with the rest of the code. For example: val someDataFrame : DataFrame = getSomehow() val someOtherDataFrame : DataFrame = getSomehowAlso