rdd

Spark: Saving RDD in an already existing path in HDFS

微笑、不失礼 提交于 2019-12-02 10:17:37
问题 I am able to save the RDD output to HDFS with saveAsTextFile method. This method throws an exception if the file path already exists. I have a use case where I need to save the RDDS in an already existing file path in HDFS. Is there a way to do just append the new RDD data to the data that is already existing in the same path? 回答1: One possible solution, available since Spark 1.6, is to use DataFrames with text format and append mode: val outputPath: String = ??? rdd.map(_.toString).toDF

passing value of RDD to another RDD as variable - Spark #Pyspark [duplicate]

拥有回忆 提交于 2019-12-02 09:29:28
This question already has an answer here: How to get a value from the Row object in Spark Dataframe? 3 answers I am currently exploring how to call big hql files (contains 100 line of an insert into select statement) via sqlContext. Another thing is, The hqls files are parameterize, so while calling it from sqlContext, I want to pass the parameters as well. Have gone through loads of blogs and posts, but not found any answers to this. Another thing I was trying, to store an output of rdd into a variable. pyspark max_date=sqlContext.sql("select max(rec_insert_date) from table") now want to pass

Access dependencies available in Scala but no PySpark

五迷三道 提交于 2019-12-02 08:48:46
I am trying to access the dependencies of an RDD. In Scala it is a pretty simple code: scala> val myRdd = sc.parallelize(0 to 9).groupBy(_ % 2) myRdd: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[2] at groupBy at <console>:24 scala> myRdd.dependencies res0: Seq[org.apache.spark.Dependency[_]] = List(org.apache.spark.ShuffleDependency@6c427386) But dependencies is not available in PySpark. Any pointers on how I can access them? >>> myRdd.dependencies Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'PipelinedRDD' object has no attribute

Comparing two RDDs

喜夏-厌秋 提交于 2019-12-02 08:44:43
I have two RDD[Array[String]], let's call them rdd1 and rdd2. I would create a new RDD containing just the entries of rdd2 not in rdd1 (based on a key). I use Spark on Scala via Intellij. I grouped rdd1 and rdd2 by a key (I will compare just the keys of the two rdds): val rdd1Grouped = rdd1.groupBy(line => line(0)) val rdd2Grouped = rdd2.groupBy(line => line(0)) Then, I used a leftOuterJoin : val output = rdd1Grouped.leftOuterJoin(rdd2Grouped).collect { case (k, (v, None)) => (k, v) } but this doesn't seem to give the correct result. What's wrong with it? Any suggests? Example of RDDS (every

PySpark, intersection by Key

守給你的承諾、 提交于 2019-12-02 08:19:04
问题 for example I have two RDDs in PySpark: ((0,0), 1) ((0,1), 2) ((1,0), 3) ((1,1), 4) and second is just ((0,1), 3) ((1,1), 0) I want to have intersection from the first RDD with the second one. Actually, second RDDs has to play the role of the mask for the first. The output should be: ((0,1), 2) ((1,1), 4) it means the values from the first RDD, but only for the keys from the second. The lengths of both RDDs are different. I have some solution (have to prove), but something like this: rdd3 =

林子雨-5.2 键值对RDD

混江龙づ霸主 提交于 2019-12-02 06:37:39
目录 1、创建键值对RDD 从文件加载 通过并行集合创建 2、常用的键值对RDD转换操作(reduceByKey和groupByKey) 3、keys,values.sortByKey,mapValues,join 4、综合实例 1、创建键值对RDD 从文件加载 通过并行集合创建 2、常用的键值对RDD转换操作(reduceByKey和groupByKey) groupByKey的valueList以Iterable的形式保存(放在Iterable容器中) 用groupByKey和reduceByKey完成词频统计 3、keys,values.sortByKey,mapValues,join keys:把key取出形成新的RDD values:与keys同理 sortByKey():默认按Key升序排序(false为降序) sortBy():.sortBy(_._2,false)按值降序排序 mapValues(fanc) 只对value进行操作 join 4、综合实例 来源: https://blog.csdn.net/helloworld0906/article/details/102729906

Spark工作原理入门

試著忘記壹切 提交于 2019-12-02 05:39:50
Spark工作原理入门 文章目录 Spark工作原理入门 1.功能概要 基本描述 运用场景 实际使用 2.模块组成 HDFS MLlib Mesos Tachyon GraphX Spark SQL Spark Streaming 3.Spark核心对象RDD的处理 什么是RDD? RDD的属性 RDD的处理流程 RDD的运算 4.核心逻辑架构 Spark的任务提交流程 名词解释 Driver SparkContext RDD DAG Scheduler TaskScheduler Worker Executor 划分Stage Spark运行逻辑 DagScheduler 和 TaskScheduler 的任务交接 5.测试用例 6.总结 1.功能概要 基本描述 Spark是基于内存计算的大数据并行计算框架。Spark基于内存计算,提高了在大数据环境下数据处理的实时性,同时保证了高容错性和高可伸缩性,允许用户将Spark部署在大量廉价硬件之上,形成集群。 对于Spark这样的分布式计算系统,任务会分发到多台机器上执行,榨干有限的集群资源来实现快速并行计算达到高效快速, Spark优先考虑使用各节点的内存作为存储 ,当内存不足时都会考虑使用磁盘,这极大地减少了磁盘I/O,提供了任务执行的效率,使得Spark适用于实时计算、迭代计算、流式计算等场景。在实际场景中

RDD split and do aggregation on new RDDs

妖精的绣舞 提交于 2019-12-02 05:36:00
问题 I have an RDD of (String,String,Int) . I want to reduce it based on the first two strings And Then based on the first String I want to group the (String,Int) and sort them After sorting I need to group them into small groups each containing n elements. I have done the code below. The problem is the number of elements in the step 2 is very large for a single key and the reduceByKey(x++y) takes a lot of time. //Input val data = Array( ("c1","a1",1), ("c1","b1",1), ("c2","a1",1),("c1","a2",1), (

使用程序中的集合创建RDD

蹲街弑〆低调 提交于 2019-12-02 05:05:16
import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function2; import java.util.Arrays; import java.util.List; //通过并行化集合创建RDD public class ParallelizeCollection { public static void main(String[] args) { //创建Sparkconf SparkConf conf = new SparkConf() .setAppName("ParallelizeCollection") .setMaster("local"); //创建javaSparkContent JavaSparkContext sc = new JavaSparkContext(conf); //要通过并行化集合方式创建RDD,那么就调用SparkContext以及其子类的parallelize()的方法 List<Integer> numbers = Arrays.asList(1, 2,

spark学习(1)——RDD和DataFrame和DataSet三者间的区别

别等时光非礼了梦想. 提交于 2019-12-02 05:00:38
原文链接:https://blog.csdn.net/weixin_43087634/article/details/84398036 https://www.jianshu.com/p/8ab678331d95 https://www.cnblogs.com/lestatzhang/p/10611320.html 1.RDD (1)RDD是一个懒执行的不可变的可以支持Lambda表达式的并行数据集合。 (2)RDD的最大好处就是简单,API的人性化程度很高。 (3)RDD的劣势是性能限制,它是一个JVM驻内存对象,这也就决定了存在GC的限制和数据增加时Java序列化成本的升高。 2.DataFrame (1)DataFrame也是一个分布式数据容器,而且记录数据的结构信息,即schema,支持嵌套数据类型(struct、array和map)。 (2)DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低. (3)Dataframe的劣势在于在编译期缺少类型安全检查,导致运行时出错 对比 : (1)RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。 (2