用Keras搭建神经网络 简单模版(六)——Autoencoder 自编码
import numpy as np np.random.seed(1337) from keras.datasets import mnist from keras.models import Model from keras.layers import Dense, Input import matplotlib.pyplot as plt (x_train,y_train),(x_test,y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255.-0.5 #(-0.5,0.5)的区间 x_test = x_test.astype('float32') / 255.-0.5 x_train = x_train.reshape((x_train.shape[0],-1)) x_test = x_test.reshape((x_test.shape[0],-1)) print(x_train.shape) print(x_test.shape) # 最终压缩成2个 encoding_dim = 2 # 输入 input_img = Input(shape=(784,)) # encoder layers encoded = Dense(128, activation='relu')(input