关于fisher判别的一点理解
最近一个朋友问这方面的一些问题,其实之前也就很粗略的看了下fisher,真正帮别人解答问题的时候才知道原来自己也有很多东西不懂。下面小结下自己对fisher判别的理解: 其实fisher和PCA差不多,熟悉PCA的人都知道,PCA其实就是在寻找一个子空间。这个空间怎么来的呢,先求协方差矩阵,然后求这个协方差矩阵的特征空间(特征向量对应的空间),选取最大的特征值对应的特征向量组成特征子空间(比如说k个,相当于这个子空间有k维,每一维代表一个特征,这k个特征基本上可以涵盖90%以上的信息)。那么我们把样本投影在这个子空间,原来那么多维的信息就可以用这k维的信息代替了,也就是说降维了。至于PCA为啥要用求协方差矩阵然后求特征子空间的方法,这个数学上有证明,记得在某篇文章上看过,有兴趣的可以找找,看看证明。 那么fisher空间又是怎么一回事呢,其实fisher判别和PCA是在做类似的一件事,都是在找子空间。不同的是,PCA是找一个低维的子空间,样本投影在这个空间基本不丢失信息。而fisher是寻找这样的一个空间,样本投影在这个空间上,类内距离最小,类间距离最大。那么怎么求这个空间呢,类似于PCA,求最大特征值对应的特征向量组成的空间。 当我们取最大几个特征值对应的特征向量组成特征空间时(这里指出,最佳投影轴的个数d<=c-1,这里c是类别数),最佳投影矩阵如下: