ospf路由协议

OSPF单区域配置-ZTE中兴路由器

一曲冷凌霜 提交于 2019-12-03 09:03:02
实验名称 OSPF单区域配置实验(中兴路由器) 知识准备 掌握OSPF动态路由协议的定义和功能 掌握OSPF动态路由协议的特征和工作原理 实验目的 掌握OSPF动态路由单区域的基本配置方法和结果验证 实验内容 完成中兴路由器OSPF动态路由的基本配置和结果验证 实验拓扑 实验步骤 路由器的基本配置 (一)路由器R1的基本配置: (二)路由器R2的基本配置: 结果验证 (一)查看各个路由表信息 R1路由器: R2路由器: (二)查看邻居路由 R1路由器: R2路由器: (三)查看OSPF路由表 R1路由器: R2路由器: (四)确保PC连通性 PC1 ping PC2: PC2 ping PC1: 来源: CSDN 作者: T.machine 链接: https://blog.csdn.net/weixin_39329758/article/details/90665087

CISCO OSPF-RIP 双向重分布

匿名 (未验证) 提交于 2019-12-03 00:34:01
OSPF和RIP双向重分布实验,知识点包括了:使用access-list和route-map来过滤路由;修改AD值防止次优路径产生。 老司机介绍的思路是:网络边缘往往会出现环路和次优,动态路由协议本身都会有自己的防环机制,所以很有可能是工程师设计或者配置问题。在OSPF里面,我们可以将环路路由直接干掉(路由TAG;过滤TAG)。另外一方面,我们优化网络也会需要做相应的路由汇总和路由过滤。 1.实验拓扑: 实验目的:R4的3.1.1.1通过R2访问R1的1.1.1.1;4.1.1.1通过R3访问2.1.1.1。在R4上过滤掉RIP的直连网段,同时防止可能的次优路径产生。 2.实验步骤: 配置RIP和OSPF。 配置路由重分布和 ACL过滤。 3.先把实验配置贴出来: 3.1:RIP R1: router rip version 2 network 0.0.0.0 no auto-summary R2: router rip version 2 redistribute ospf 100 metric 5 route-map O-to-R network 10.0.0.0 no auto-summary 各种不同的路由协议计算度量值不一致,所以重分布的时候需要一个标准的metrics值,在Redistribute命令下加入。 默认的metrics参数:RIP 无穷大(infinity)

(3)OSPF的LSA类型

匿名 (未验证) 提交于 2019-12-03 00:32:02
OSPF的LSA类型种类繁多,往往让人头晕恶心。然后OSPF又是目前应用最广泛的IGP协议,我们不得不对它进行研究。OSPF的LSA类型一共有11种,分别是: LSA1路由器LSA(Router LSA) LSA2 网络LSA(Network LSA) LSA3网络汇总LSA(Network summary LSA) LSA4 ASBR汇总LSA(ASBR summary LSA) LSA5 自治系统外部LSA (Autonomous system external LSA) LSA6 组成员LSA (Group membership LSA) 目前不支持组播OSPF (MOSPF协议) LSA7 NSSA外部LSA (NSSA External LSA) LSA8 BGP的外部属性LSA(External attributes LSA for BGP) LSA9 不透明LSA(本地链路范围) (opaque LSA) 目前主要用于MPLS多协议标签交换协议 LSA10不透明LSA(本地区域范围) (opaque LSA) 目前主要用于MPLS多协议标签交换协议 LSA11不透明LSA(AS范围) (opaque LSA) 目前主要用于MPLS多协议标签交换协议 这11种LSA中,我们主要研究其中的 LSA1、2、3、4、5、7 。其余的在一些特殊环境使用

OSPF动态路由协议基础理论

匿名 (未验证) 提交于 2019-12-03 00:09:02
OSPF概述 OSPF协议是一种链路状态协议。每个路由器负责发现、维护与邻居的关系,并将已知的邻居列表和链路费用LSU(Link State Update)报文描述,通过可靠的泛洪与自治系统AS(Autonomous System)内的其他路由器周期,学习到整个自治系统的网络拓扑结构;并通过自治系统边界的路由器注入其他AS的路由信息,从而得到整个Internet的路由信息。每隔一个特定时间或当链路状态发生变化时,重新生成LSA,路由器通过泛洪机制将新LSA通告出去,以便实现路由的实时更新 ・ OSPF(开放式最短路径优先) 基于链路状态信息的内部网关协议(IGP协议) 基于IP协议,协议号:89 SPF算法:OSPF区域中所有的路由器会从与他相邻的路由器获得LSA,将这些LSA存入LSDB中,计算到每一地方的最优路径,然后将最优路径存入全局路由表中。在计算的过程中,就已经消除了环路 ・ OSPF特点 可适应大规模网络 路由变化收敛速度快 无路由环 支持变长子网掩码VLSM 支持区域划分 支持以组播地址发送协议报 ・ 一、OSPF四种路由类型 类型 描述 DR 当多路访问网络发生变化时,DR负责更新其他所有路由器 BDR BDR会监控DR 的状态,并在当前DR发生故障时接替其角色 ABR ABR用来连接骨干区域和非骨干区域,它与骨干区域之间既可以是物理连接,也可以是逻辑上的连接

RIP动态路由配置

匿名 (未验证) 提交于 2019-12-02 23:32:01
在相对较小而且结构不变的网络中,静态路由是很好的解决方案,它配置简单而且不过多消耗设备资源(动态路由协议在运行时要消耗路由器内部资源,在与其他路由器更新信息时又会消耗网络资源)。 然而在大型网络中,网络非常多,而且很有可能因为某些因素的影响,网络拓扑会有轻微变化。这时如果仍然采用静态路由就非常不方便了。 1)通过RIP实现路由间通信 动态路由协议配置灵活,路由器会发送自身的路由信息给其他路由器,同时也会接收其他路由器发来的路由信息建立自己的路由表。这样在路由器上就不必像静态路由那样为每个目标地址都配置路由,因为路由器可以通过协议学习这些路由。网络拓扑改变,路由信息也会自动更新,无需管理员干预。 网络拓扑如图 实现此案例需要按照如下步骤进行。 步骤一:VLAN以及端口配置与上面3三层交换配置路由完全一致,不再赘述配置 步骤二:将上面【1.3在三层交换机上配置路由】中的静态、默认路由删除 tarenasw - 3L ( config )# no ip route 0.0 . 0.0 0.0 . 0.0 192.168 . 10.1 tarena - rouer ( config )# no ip route 192.168 . 1.0 255.255 . 255.0 192.168 . 10.2 tarena - rouer ( config )# no ip route 192

OSPF路由协议之多区域配置

匿名 (未验证) 提交于 2019-12-02 23:32:01
在大型网络中,使用OSPF路由协议时经常会遇到以下问题: 1、在大型网络环境中,网络结构的变化是时常发生的,因此OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源。 2、在OSPF网络中,随着多条路径的增加,路由表变得越来越大,每一次路径的改变都会使路由器不得不花费大量的时间和资源去重新计算路由表,路由器变得越来越低效。 3、包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路由器的CPU和内存资源彻底耗尽,从而导致路由器的崩溃。 所以,为了解决这个问题,OSPF允许把大型网络划分成多个更易管理的小型区域。这些小型区域可以交换路由汇总信息,而不是每一个路由器的细节。通过划分成很多个小型区域,OSPF的工作可以更加流畅。 生成OSPF多区域后能够改善网络的可扩展性、实现快速收敛。 OSPF的容量: 单个区域所支持的路由器的数量范围是30~200,但在一个区域内实际加入的路由器数量要小于单个区域所能容纳的路由器的最大数量。因为还有更为重要的一些因素影响着这个数量,如一个区域内链路的数量、网络拓扑稳定性、路由器的内存和CPU性能、路由汇总的有效使用和注入这个区域的汇总链路状态通告(LSA)的数量等。正是由于这些因素,有时在一些区域里包含25台路由器可能都显得多,而在另外一些区域内却可以容纳多于500台路由器。

动态路由协议之OSPF协议

匿名 (未验证) 提交于 2019-12-02 23:32:01
之前我们介绍了距离矢量路由协议,路由器之间互相传递路由表来传递路由信息,距离矢量协议的路由器只知道某个网段可以通过那个下一跳到达和到达这个网络有多远等这样的信息,并不了解整个网络的拓扑结构。而今天所说的链路状态路由协议则通过与邻居路由器建立邻接关系,互相传递链路状态信息来了解整个网络拓扑结构。 运行链路状态路由协议的路由器就好像各自“绘制”自己所了解的网段信息,然后通过与邻居路由器建立邻接关系,互相“交流”链路信息,学习整个区域内的链路信息,来“绘制”出整个区域内的链路图。在一个区域内的所有路由器都保存着完全相同的链路状态数据库。 OSPF是基于开放标准的链路状态路由选择协议,它完成各路由选择协议算法的两大功能:路径选择和路径交换。 在共同管理域下的一组运行相同路由选择协议的路由器的集合为一个自治系统(AS)。在互联网中,一个AS是一个有权决定本系统使用哪种路由协议的单位,他可以是一个企业,一座城市或一个电信运营商。随着网络的发展,上述对AS的定义已经不是十分准确了,网络的发展使得网络之间经常出现网络合并情况,导致同一个AS中使用的路由协议越来越多,所以AS的定义应用是在共同管理下的互联网络。 内部网关路由协议(IGP),用于在单一AS内决策路由。内部网关路由协议包括RIP、OSPF等。 与内部网关路由协议相对应的是外部网关路由协议(EGP)

华为ospf实验配置实例

感情迁移 提交于 2019-12-02 12:52:00
ospf配置实例 ospf OSPF 开放式最短路径优先协议 目前使用范围最广泛的IGP协议;无类别链路状态路由协议; OSPF协议最大的缺点,在于基于拓扑收敛产生巨大的更新量; 故设计者在设计ospf协议过程中,使用了很多的机制来减少更新量-----结构的部署 1、区域划分—单区域内传递拓扑 用于每台路由器本地计算到达所有未知网段的最短路径 区域间传递计算完成后的路由条目信息 2、合理的IP地址规划—一个区域可以汇总成一个网段为最佳 3、特殊区域 4、30min周期的更新 实验拓扑如下所示 R1: interface GigabitEthernet0/0/1 ip address 12.1.1.1 255.255.255.0 interface LoopBack0 ip address 1.1.1.1 255.255.255.0 ospf 1 router-id 1.1.1.1 area 0.0.0.0       在区域0宣告 network 12.1.1.1 0.0.0.0 area 0.0.0.1       在区域1宣告 network 1.1.1.1 0.0.0.0 R2: interface GigabitEthernet0/0/0 ip address 12.1.1.2 255.255.255.0 interface GigabitEthernet0/0/1 ip

OSPF特殊区域和LSA

别等时光非礼了梦想. 提交于 2019-12-02 03:08:40
区域    在一个OSPF网络中,可以包括多种区域,其中就有三种常见的特殊区域,即就是骨干区域(Backbone Area)、末梢区域(Stub Area)和非纯Stub区域(No Stotal Stub area,NSSA),当然还可以包括其它标准区域。OSPF网络中的区域是以区域ID进行标识的,区域ID为0的区域规定为骨干区域。一个OSPF互联网络,无论有没有划分区域,总是至少有一个骨干区域。骨干区域有一个ID 0.0.0.0,也称之为区域0。另外,骨干区域必须是连续的(也就是中间不会越过其他区域),也要求其余区域必须与骨干区域直接相连(但事实上,有时并不一定会这样,所以也就有了下面将要介绍的"虚拟链路"技术)。骨干区域一般为区域0(Area 0),其主要工作是在其余区域间传递路由信息。   骨干区域作为区域间传输通信和分布路由信息的中心。区域间的通信先要被路由到骨干区域,然后再路由到目的区域,最后被路由到目的区域中的主机。在骨干区域中的路由器通告他们区域内的汇总路由到骨干区域中的其他路由器。这些汇总通告在区域内路由器泛洪,所以在区域中的每台路由器有一个反映在它所在区域内路由可用的路由表,这个路由与AS中其他区域的ABR汇总通告相对应。   在实际网络中,可能会存在骨干区域不连续,或者某一个区域与骨干区域物理不相连的情况,此时系统管理员可以通过设置虚拟链路(Virtual

OSPF总结

纵饮孤独 提交于 2019-12-01 18:38:17
OSPF概念 OSPF :Open Shortest Path First,开放最短路径优先协议,是一种链路状态路由协议,在RFC 2328中描述。Open意味着开放、公有,任何标准化的设备厂商都能够支持OSPF。 与RIP的区别 ※ RIP:运行距离矢量路由协议,周期性的泛洪自己的路由表,通过路由的交互,每台路由器都从相邻(直连)的路由器学习到路由,并且加载进自己的路由表中,而对于这个网络中的所有路由器而言,他们并不清楚网络的拓扑,他们只是简单的知道要去往某个目的应该从哪里走,距离有多远。 ※ OSPF:运行链路状态路由协议,路由器之间交互的是LSA(链路状态通告),而非路由信息,路由器将网络中泛洪的LSA搜集到自己的LSDB(链路状态数据库)中,这有助于OSPF理解整张网络拓扑,并在此基础上通过SPF最短路径算法计算出以自己为根的、到达网络各个角落的、无环的树,最终,路由器将计算出来的路由装载进路由表中。 OSPF特性  OSPF链路状态协议(开放式最短路径优先),支持VLSM(变长子网掩码),CIDR(无类路由协议),支持安全认证  采用SPF算法(Dijkstra算法)计算最佳路径,快速响应网络变化  网络变化是触发更新  以较低频率(每隔30分钟)发送定期更新,被称为链路状态刷新  与距离矢量相比,链路状态协议掌握更多的网络信息 OSPF三张表 1. 邻居表