mlp

How to translate the neural network of MLP from tensorflow to pytorch

自古美人都是妖i 提交于 2021-02-07 10:45:26
问题 I have built up an MLP neural network using 'Tensorflow', which is stated as follow: model_mlp=Sequential() model_mlp.add(Dense(units=35, input_dim=train_X.shape[1], kernel_initializer='normal', activation='relu')) model_mlp.add(Dense(units=86, kernel_initializer='normal', activation='relu')) model_mlp.add(Dense(units=86, kernel_initializer='normal', activation='relu')) model_mlp.add(Dense(units=10, kernel_initializer='normal', activation='relu')) model_mlp.add(Dense(units=1)) I want to

TensorFlow人工智能引擎入门教程之八 接着补充一章MLP多层感知器网络原理以及 使用

断了今生、忘了曾经 提交于 2019-12-29 19:57:07
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 这一章我们讲MLP 多层感知器 的使用,多层感知器 ,常用来做分类,效果非常好,比如文本分类,效果比SVM 贝叶斯 好多了,这些以前的机器学习很有名的算法,我现在基本不用它们,现在是深度学习 的AI时代。 多层感知器的介绍 MLP(多层感知器)神经网络是常见的ANN算法,它由一个输入层,一个输出层和一个或多个隐藏层组成。 在MLP中的所有神经元都差不多,每个神经元都有几个输入(连接前一层)神经元和输出(连接后一层)神经元,该神经元会将相同值传递给与之相连的多个输出神经元 一个神经网络训练网将一个特征向量作为输入,将该向量传递到隐藏层,然后通过权重和激励函数来计算结果,并将结果传递给下一层,直到最后传递给输出层才结束 首先我们来 下面是一个2层的多层感知器 其中 relu可以换成 tanh或者sigmoid 比如 tf.nn.sigmoid(tf.matmul(X, w_h)) #WX+B def multilayer_perceptron(_X, _weights, _biases): layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) #Hidden layer with RELU activation

Spark MultilayerPerceptronClassifier Class Probabilities

≡放荡痞女 提交于 2019-12-24 20:54:55
问题 I am an experienced Python programmer trying to transition some Python code to Spark for a classification task. This is my first time working in Spark/Scala. In Python, both Keras/tensorflow and sci-kit Learn neural networks do a great job on the multi-class classification and I'm able to easily return the top 3 most probable classes along with probabilities which are key to this project. I have been generally successful in moving the code to Spark (Scala) and I'm able to generate the correct

SkikitLearn learning curve strongly dependent on batch size of MLPClassifier ??? Or: how to diagnose bias/ variance for NN?

倖福魔咒の 提交于 2019-12-24 20:16:44
问题 I am currently working on a classification problem with two classes in ScikitLearn with the solver adam and activation relu. To explore if my classifier suffers from high bias or high variance, I plotted the learning curve with Scikitlearns build-in function: https://scikit-learn.org/stable/auto_examples/model_selection/plot_learning_curve.html I am using a Group-K_Fold crossvalidation with 8 splits. However, I found that my learning curve is strongly dependent on the batch size of my

Does Dlib's MLP implementation have any restriction?

放肆的年华 提交于 2019-12-23 04:57:06
问题 I am training a simple MLP (8 units in the input layer, 50 units in the hidden layer) using C++ DLib with the following 89 samples as training data: float template_user[89][8]={ {0.083651,0.281587,0.370476,0.704444,0.253865,0.056415,0.002344,0.465187}, {0.142540,0.272857,0.376032,0.740952,0.591501,0.227614,0.000000,0.832224}, {0.095625,0.258750,0.447500,0.779792,0.449932,0.000964,0.035104,0.606591}, {0.115208,0.181250,0.478750,0.797083,0.491855,0.015824,0.011652,0.649632}, {0.107436,0.166026