MLflow

Artifact storage and MLFLow on remote server

夙愿已清 提交于 2020-06-14 05:59:21
问题 I am trying to get MLFlow on another machine in a local network to run and I would like to ask for some help because I don't know what to do now. I have a mlflow server running on a server . The mlflow server is running under my user on the server and has been started like this: mlflow server --host 0.0.0.0 --port 9999 --default-artifact-root sftp://<MYUSERNAME>@<SERVER>:<PATH/TO/DIRECTORY/WHICH/EXISTS> My program which should log all the data to the mlflow server looks like this: from mlflow

PaddlePaddle/ElasticCTR

落爺英雄遲暮 提交于 2020-04-16 11:48:02
【推荐阅读】微服务还能火多久?>>> ElasticCTR ElasticCTR是分布式训练CTR预估任务和Serving流程一键部署的方案,用户只需配置数据源、样本格式即可完成一系列的训练与预测任务 1. 总体概览 2. 配置集群 3. 一键部署教程 4. 训练进度追踪 5. 预测服务 1. 总体概览 本项目提供了端到端的CTR训练和二次开发的解决方案,主要特点如下: 1.快速部署 ElasticCTR当前提供的方案是基于百度云的Kubernetes集群进行部署,用户可以很容易扩展到其他原生的Kubernetes环境运行ElasticCTR。 2.高性能 ElasticCTR采用PaddlePaddle提供的全异步分布式训练方式,在保证模型训练效果的前提下,近乎线性的扩展能力可以大幅度节省训练资源。在线服务方面,ElasticCTR采用Paddle Serving中高吞吐、低延迟的稀疏参数预估引擎,高并发条件下是常见开源组件吞吐量的10倍以上。 3.可定制 用户可以通过统一的配置文件,修改训练中的训练方式和基本配置,包括在离线训练方式、训练过程可视化指标、HDFS上的存储配置等。除了通过修改统一配置文件进行训练任务配置外,ElasticCTR采用全开源软件栈,方便用户进行快速的二次开发和改造。底层的Kubernetes、Volcano可以轻松实现对上层任务的灵活调度策略

Logging Artifacts from MlFlow on GCS Bucket

a 夏天 提交于 2020-03-23 10:19:21
问题 I have a running MlFlow server on GCS VM instance. I have created a bucket to log the artifacts. This is the command I'm running to start the server and for specifying bucket path- mlflow server --default-artifact-root gs://gcs_bucket/artifacts --host x.x.x.x But facing this error: TypeError: stat: path should be string, bytes, os.PathLike or integer, not ElasticNet Note- The mlflow server is running fine with the specified host alone. The problem is in the way when I'm specifying the storage

Is it possible to set/change mlflow run name after run initial creation?

扶醉桌前 提交于 2019-12-11 03:38:44
问题 I could not find a way yet of setting the runs name after the first start_run for that run (we can pass a name there). I Know we can use tags but that is not the same thing. I would like to add a run relevant name, but very often we know the name only after run evaluation or while we're running the run interactively in notebook for example. 回答1: It is possible to edit run names from the MLflow UI. First, click into the run whose name you'd like to edit. Then, edit the run name by clicking the

Kubeflow镜像的快速下载(V0.3.3)

余生长醉 提交于 2019-11-29 04:51:23
Kubeflow是一个面向Kubernetes集群运行的机器学习框架。要想使用得先想办法把镜像搬到自己的环境里来。 目前版本0.3.3的容器镜像已经搬回来,可以使用下面的脚本来从Aliyun的镜像服务站下载: Kubeflow系统容器镜像(0.3.3): echo "" echo "=================================================================" echo "Pull kubeflow images for system from aliyun.com ..." echo "This tools created by openthings, NO WARANTY. 2018.11.28." echo "=================================================================" MY_REGISTRY=registry.cn-hangzhou.aliyuncs.com/openthings echo "" echo "1. centraldashboard" docker pull ${MY_REGISTRY}/kubeflow-images-public-centraldashboard:v0.2.1 docker tag ${MY_REGISTRY}

AirFlow/NiFi/MLFlow/KubeFlow进展

╄→гoц情女王★ 提交于 2019-11-29 04:51:10
大数据分析中,进行流程化的批处理是必不可少的。传统的大数据处理大部分是基于关系数据库系统,难以实现大规模扩展;主流的基于Hadoop/Spark体系总体性能较强,但使用复杂、扩展能力弱。大数据分析向Kubernnetes等容器集群发展是大势所趋,AirFlow、NiFi、MLFlow、KubeFlow就是可以用于这些方向的新兴开源软件平台,可以充分容器集群和DevOps、云计算的优势,而且将传统的大量数据处理和机器学习等先进算法能够实现有机的结合。 AirFlow数据流程化处理系统 AirFlow是可编程的DAG流程框架,主要通过Python执行。最新版本通过Executor机制支持Kubernetes集群作为执行环境,从而可以将大量数据处理的流程在容器云中进行迁移。 Airflow在Kubernetes上的操作器 AirFlow-Tutorial AirFlow-Install Notebook Workflows: The Easiest Way to Implement Apache Spark Pipelines NiFi可视化数据流处理系统 通过可视化的方法编辑流程,并在线运行,支持后台监控、任务调度、执行器扩展等能力。NiFi采用Java和HTML开发,通过Web浏览器访问图形交互界面,服务器端可以运行于容器中。 NiFi ( https://nifi.apache