数据运营者的福音:海量数据处理利器Greenplum
前言:近年来,互联网的快速发展积累了海量大数据,而在这些大数据的处理上,不同技术栈所具备的性能也有所不同,如何快速有效地处理这些庞大的数据仓,成为很多运营者为之苦恼的问题!随着Greenplum的异军突起,以往大数据仓库所面临的很多问题都得到了有效解决,Greenplum也成为新一代海量数据处理典型代表。本文结合个推数据研发工程师李树桓在大数据领域的实践,对处理庞大的数据量时,如何选择有效的技术栈做了深入研究,探索出Greenplum是当前处理大数据仓较为高效稳定的利器。 一、Greenplum诞生的背景 时间回到2002年,那时整个互联网数据量正处于快速增长期,一方面传统数据库难以满足当前的计算需求,另一方面传统数据库大多基于SMP架构,这种架构最大的一个特点是共享所有资源,扩展性能差,因此面对日益增长的数据量,难以继续支撑,需要一种具有分布式并行数据计算能力的数据库,Greenplum正是在此背景下诞生了。 和传统数据库的SMP架构不同,Greenplum主要基于MPP架构,这是由多个服务器通过节点互联网络连接而成的系统,每个节点只访问自己的本地资源(包括内存、存储等),是一种完全无共享(Share Nothing)结构,扩展能力较之前有明显提升。 二、解读 Greenplum架构 Greenplum 主要由