MapReduce

Running wordcount Hadoop example on Windows using Hadoop 2.6.0

随声附和 提交于 2019-12-13 18:50:34
问题 I am new to Hadoop and learnt that with 2.x version, I can try Hadoop on my local Windows 7 64-bit machine. I installed hadoop 2.6.0 and installed cygwin. I could execute bin/hadoop version but I get the below error while executing the jar command: Note: I have also placed the winutils.jar in the bin, from hadoop-common-2.2.0.jar. Please help. I am not able to get rid of this error. I have also entered the input and output parameters, it still fails. $ bin/hadoop jar /Hadoop/hadoop-2.6.0

CouchDB Map/Reduce view query from Ektorp

亡梦爱人 提交于 2019-12-13 18:01:57
问题 I'm trying to execute a query from java against a Map/Reduce view I have created on the CouchDB. My map function looks like the following: function(doc) { if(doc.type == 'SPECIFIC_DOC_TYPE_NAME' && doc.userID){ for(var g in doc.groupList){ emit([doc.userID,doc.groupList[g].name],1); } } } and Reduce function: function (key, values, rereduce) { return sum(values); } The view seems to be working when executed from the Futon interface (without keys specified though). What I'm trying to do is to

MongoDB - Use aggregation framework or mapreduce for matching array of strings within documents (profile matching)

我们两清 提交于 2019-12-13 17:55:54
问题 I'm building an application that could be likened to a dating application. I've got some documents with a structure like this: $ db.profiles.find().pretty() [ { "_id": 1, "firstName": "John", "lastName": "Smith", "fieldValues": [ "favouriteColour|red", "food|pizza", "food|chinese" ] }, { "_id": 2, "firstName": "Sarah", "lastName": "Jane", "fieldValues": [ "favouriteColour|blue", "food|pizza", "food|mexican", "pets|yes" ] }, { "_id": 3, "firstName": "Rachel", "lastName": "Jones", "fieldValues"

学习Hadoop大数据基础框架

笑着哭i 提交于 2019-12-13 17:48:12
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 什么是大数据?进入本世纪以来,尤其是2010年之后,随着互联网特别是移动互联网的发展,数据的增长呈爆炸趋势,已经很难估计全世界的电子设备中存储的数据到底有多少,描述数据系统的数据量的计量单位从MB(1MB大约等于一百万字节)、GB(1024MB)、TB(1024GB),一直向上攀升,目前,PB(等于1024TB)级的数据系统已经很常见,随着移动个人数据、社交网站、科学计算、证券交易、网站日志、传感器网络数据量的不断加大,国内拥有的总数据量早已超出 ZB(1ZB=1024EB,1EB=1024PB)级别。 传统的数据处理方法是:随着数据量的加大,不断更新硬件指标,采用更加强大的CPU、更大容量的磁盘这样的措施,但现实是:数据量增大的速度远远超出了单机计算和存储能力提升的速度。 而“大数据”的处理方法是:采用多机器、多节点的处理大量数据方法,而采用这种新的处理方法,就需要有新的大数据系统来保证,系统需要处理多节点间的通讯协调、数据分隔等一系列问题。 总之,采用多机器、多节点的方式,解决各节点的通讯协调、数据协调、计算协调问题,处理海量数据的方式,就是“大数据”的思维。其特点是,随着数据量的不断加大,可以增加机器数量,水平扩展,一个大数据系统,可以多达几万台机器甚至更多。

Debugging why a Hadoop job fails with varying input

非 Y 不嫁゛ 提交于 2019-12-13 17:27:35
问题 There's a Hadoop job I'm trying to run, and when I specify the input as 28 repetitions of my toy data everything works perfectly, however, when I crank it to 29 the whole thing crashes. My idea is that there isn't anything wrong with the logic of the code, as it works for 28 repetitions but not 29 . Here is what 2 repetitions of the input data looks like (repetitions are not to be confused with input files , it rather refers to the number of ones prepended to that long numeric string, i.e.

Hadoop学习之路(7)MapReduce自定义排序

主宰稳场 提交于 2019-12-13 15:37:32
本文测试文本: tom 20 8000 nancy 22 8000 ketty 22 9000 stone 19 10000 green 19 11000 white 39 29000 socrates 30 40000    MapReduce中,根据key进行分区、排序、分组 MapReduce会按照基本类型对应的key进行排序,如int类型的IntWritable,long类型的LongWritable,Text类型,默认升序排序    为什么要自定义排序规则?现有需求,需要自定义key类型,并自定义key的排序规则,如按照人的salary降序排序,若相同,则再按age升序排序 以Text类型为例: Text类实现了 WritableComparable 接口,并且有 write() 、 readFields() 和 compare() 方法 readFields() 方法:用来反序列化操作 write() 方法:用来序列化操作 所以要想自定义类型用来排序需要有以上的方法 自定义类代码 : import org.apache.hadoop.io.WritableComparable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class

Hadoop学习之路(7)MapReduce自定义分区排序

安稳与你 提交于 2019-12-13 15:27:08
本文测试文本: tom 20 8000 nancy 22 8000 ketty 22 9000 stone 19 10000 green 19 11000 white 39 29000 socrates 30 40000    在MapReduce程序中,Map阶段输出是一个<K,V>键值对,根据K的值进行排序分区、排序、分组,MapReduce会按照基本类型对应的key进行排序,如int类型的IntWritable,默认升序排序 为什么要自定义排序规则?    现有需求,需要自定义key类型,并自定义key的排序规则,如按照人的salary降序排序,若相同,则再按age升序排序    通常情况下会根据Text类型的值进行排序,先看一下Text类型代码 来源: CSDN 作者: 数据科学实践者 链接: https://blog.csdn.net/weixin_40453404/article/details/103520368

Set Multiple prefix row filter to scanner hbase java

感情迁移 提交于 2019-12-13 15:18:32
问题 I want to create one scanner that will give me result with 2 prefix filters For example I want all the rows that their key starts with the string "x" or start with the string "y". Currently I know to do it only with one prefix with the following way: scan.setRowPrefixFilter(prefixFiltet) 回答1: In this case you can't use the setRowPrefixFilter API, you have to use the more general setFilter API, something like: scan.setFilter( new FilterList( FilterList.Operator.MUST_PASS_ONE, new PrefixFilter(

Combiner without Reducer in Hadoop

谁说胖子不能爱 提交于 2019-12-13 14:19:10
问题 Can I write a Hadoop code that has only Mappers and Combiners (i.e. mini-reducers with no reducer)? job.setMapperClass(WordCountMapper.class); job.setCombinerClass(WordCountReducer.class); conf.setInt("mapred.reduce.tasks", 0); I was trying to do so but I always see that I have one reduce task on the job tracker link Launched reduce tasks = 1 How can I delete reducers while keeping combiners? is that possible? 回答1: In the case you describe you should use Reducers. Use as key: Context

How Container failure is handled for a YARN MapReduce job?

穿精又带淫゛_ 提交于 2019-12-13 13:50:24
问题 How are software/hardware failures handled in YARN? Specifically, what happens in case of container(s) failure/crash? 回答1: Container and task failures are handled by node-manager. When a container fails or dies, node-manager detects the failure event and launches a new container to replace the failing container and restart the task execution in the new container. In the event of application-master failure, the resource-manager detects the failure and start a new instance of the application