机器学习逻辑回归算法推导
1.引自 https://www.cnblogs.com/bnuvincent/p/9695666.html 2. 基本原理 Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程: (1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为 h 函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。 (2)构造一个Cost函数(损失函数),该函数表示预测的输出( h )与训练数据类别( y )之间的偏差,可以是二者之间的差( h-y )或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为 J(θ) 函数,表示所有训练数据预测值与实际类别的偏差。 (3)显然, J(θ) 函数的值越小表示预测函数越准确(即 h 函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。 3. 具体过程 3.1 构造预测函数 Logistic Regression虽然名字里带“回归”