逻辑回归笔记
逻辑回归 Logistic/sigmoid函数 h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x h_{\theta}(x)=g\left(\theta^{T} x\right)=\frac{1}{1+e^{-\theta^{T} x}} h θ ( x ) = g ( θ T x ) = 1 + e − θ T x 1 损失函数 J ( θ ) = − ∑ i = 1 m ( y ( i ) ln h θ ( x ( i ) ) + ( 1 − y ( i ) ) ln ( 1 − h θ ( x ( i ) ) ) ) J(\theta)=-\sum_{i=1}^{m}\left(y^{(i)} \ln h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \ln \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right) J ( θ ) = − i = 1 ∑ m ( y ( i ) ln h θ ( x ( i ) ) + ( 1 − y ( i ) ) ln ( 1 − h θ ( x ( i ) ) ) ) 梯度下降算法的参数迭代公式 θ j = θ j + α ∑ i = 1 m ( y ( i ) − h