lr

What is the difference between LL and LR parsing?

淺唱寂寞╮ 提交于 2019-11-29 18:31:11
Can anyone give me a simple example of LL parsing versus LR parsing? templatetypedef At a high level, the difference between LL parsing and LR parsing is that LL parsers begin at the start symbol and try to apply productions to arrive at the target string, whereas LR parsers begin at the target string and try to arrive back at the start symbol. An LL parse is a left-to-right, leftmost derivation. That is, we consider the input symbols from the left to the right and attempt to construct a leftmost derivation. This is done by beginning at the start symbol and repeatedly expanding out the

算法推导、面试、调用——LogisticRegression(LR)

本秂侑毒 提交于 2019-11-29 08:27:46
/*--> */ /*--> */ # 算法解析 > LogisticRegression是线性回归的一个变形,对于线性回归请参阅[线性回归](www)一节 LR模型是线性模型处理分类任务的一种,是联系函数$g(\cdot)=sigmoid(\cdot)$时的广义线性模型。二分类任务的预测值$y\in\{0, 1\}$,而线性回归模型的预测值是一个实数,因此必须用一个映射函数将线性回归模型的预测值映射到$\{0, 1\}$。最理想的映射函数为单位阶跃函数$y=\begin{} \end{}$,但是单位阶跃函数并不连续可导,这将对后续求解模型参数带来困难,因此我们通常采取对数几率函数$y=sigmoid(x)=\frac{1}{1+e^{(-x)}}$作为映射函数。**sigmoid(x)函数能将输入值$x$映射到$(0,1)$之间的一个值**,这个值可以作为二分类问题预测值为1、0的概率。 ![sigmoid函数图像](_v_images/20190908170933507_1988946760.jpg =400x) LogisticRegression模型: $$f(x_i)=\frac{1}{1+e^{-(w^Tx_i+b)}} $$ 令$\beta=(w^Tx_i;b), \hat{x}=(x;1)$,损失函数为: $$L(\beta)=\sum_{i=1}^{N}(-y_i

计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践

南楼画角 提交于 2019-11-29 06:44:17
计算广告CTR预估系列(七)--Facebook经典模型LR+GBDT理论与实践 2018年06月13日 16:38:11 轻春 阅读数 6004 更多 分类专栏: 机器学习 机器学习荐货情报局 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https://blog.csdn.net/u010352603/article/details/80681100 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践 计算广告CTR预估系列(七)–Facebook经典模型LR+GBDT理论与实践 一、介绍 二、评估函数 2.1 Normalized Cross-Entropy(NE) 2.2 Calibration 三、模型架构 3.1 决策树Feature Transforms 3.2 Data freshness 3.3 LR线性分类器 四. 线上模型架构 4.1 label标注 4.2 模型架构 4.3 挑战 五、处理大量训练数据 5.1 Uniform subsampling 5.2 Negative down sampling 5.3 Model Re-Calibration 六、各种实验结果 6.1 Number of boosting trees 6.2 Boosting

推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

梦想与她 提交于 2019-11-29 06:43:07
推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列: 推荐系统遇上深度学习(一)--FM模型理论和实践: https://www.jianshu.com/p/152ae633fb00 推荐系统遇上深度学习(二)--FFM模型理论和实践: https://www.jianshu.com/p/781cde3d5f3d 推荐系统遇上深度学习(三)--DeepFM模型理论和实践: https://www.jianshu.com/p/6f1c2643d31b 推荐系统遇上深度学习(四)--多值离散特征的embedding解决方案: https://www.jianshu.com/p/4a7525c018b2 推荐系统遇上深度学习(五)--Deep&Cross Network模型理论和实践: https://www.jianshu.com/p/77719fc252fa 推荐系统遇上深度学习(六)--PNN模型理论和实践: https://www.jianshu.com/p/be784ab4abc2 推荐系统遇上深度学习(七)--NFM模型理论和实践: https://www.jianshu.com/p/4e65723ee632 推荐系统遇上深度学习(八)--AFM模型理论和实践:

Examples of LL(1), LR(1), LR(0), LALR(1) grammars?

六眼飞鱼酱① 提交于 2019-11-28 14:24:57
问题 Is there a good resource online with a collection of grammars for some of the major parsing algorithms (LL(1), LR(1), LR(0), LALR(1))? I've found many individual grammars that fall into these families, but I know of no good resource where someone has written up a large set of example grammars. Does anyone know of such a resource? 回答1: Parsing Techniques - A Practical Guide has several examples (i.e. probably half a dozen or so per type) of almost every type of grammar. You can purchase the

What is the difference between LL and LR parsing?

旧时模样 提交于 2019-11-28 13:07:50
问题 Can anyone give me a simple example of LL parsing versus LR parsing? 回答1: At a high level, the difference between LL parsing and LR parsing is that LL parsers begin at the start symbol and try to apply productions to arrive at the target string, whereas LR parsers begin at the target string and try to arrive back at the start symbol. An LL parse is a left-to-right, leftmost derivation. That is, we consider the input symbols from the left to the right and attempt to construct a leftmost

LR 特征离散化

Deadly 提交于 2019-11-28 08:32:30
LR模型介绍: https://xingqijiang.blog.csdn.net/article/details/81607994 在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: (1)离散特征的增加和减少都很容易,易于模型的快速迭代; (2)稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展; (3)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰; (4)逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合; (5)离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力; (6)特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问; (7)特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。 来源: https://blog.csdn.net/jxq0816/article/details/100045403

Pytorch调整学习率

ε祈祈猫儿з 提交于 2019-11-28 06:02:12
每隔一定的epoch调整学习率 def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr = args.lr * (0.1 ** (epoch // 30)) for param_group in optimizer.param_groups: param_group['lr'] = lrfor epoch in epochs:  train(...)  validate(...)  adjust_learning_rate(optimizer, epoch)   或者 from torch.optim import lr_scheduler adjust_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) for epoch in epochs:  train(...)  validate(...)  adjust_lr_scheduler.step() 注意,学习率的更新要放在训练和验证集测试之后进行。    2. 以一定的策略调整学习率 scheduler = torch.optim.lr

How to identify whether a grammar is LL(1), LR(0) or SLR(1)?

99封情书 提交于 2019-11-27 16:54:33
How do you identify whether a grammar is LL(1), LR(0), or SLR(1)? Can anyone please explain it using this example, or any other example? X → Yz | a Y → bZ | ε Z → ε To check if a grammar is LL(1), one option is to construct the LL(1) parsing table and check for any conflicts. These conflicts can be FIRST/FIRST conflicts, where two different productions would have to be predicted for a nonterminal/terminal pair. FIRST/FOLLOW conflicts, where two different productions are predicted, one representing that some production should be taken and expands out to a nonzero number of symbols, and one

Lr和Ps基础

烈酒焚心 提交于 2019-11-27 08:27:47
Lr 导航器->导入->选片->放大缩小->导入 右上角 修改照片->预设->YY对比 HSL(色相,饱和度,明亮度)->镜头校正 颜色(紫边)->效果-(颗粒)->直方图像素分布 裁剪->渐变滤镜->相机校准,调色 Hsl为单一颜色调整 相机校准为整体颜色调整 增加蓝元色,照片更加通透 ->导出右键选中图 Tribe-RedLeaf 常用预设下载 Ps 1.滤镜->镜头校正-> 自定义->角度->透视图 2.修补工具,图章工具磨皮 3.曲线->色彩平衡->色阶->可选颜色(白色+青 奶油色) 4.空白图层->蒙版+滤镜=在特点定位置使用滤镜 5.高反差保留(调节锐度)->减淡工具(加光)、加深工具(减光) 6几何扭曲,拉腿 来源: https://blog.csdn.net/bayinglong/article/details/99495487