lidar

SLAM:loam算法架构分析

匿名 (未验证) 提交于 2019-12-03 00:30:01
在研读了论文及开源代码后,对LOAM的一些理解做一个整理。 文章:Low-drift and real-time lidar odometry and mapping 开源代码:https://github.com/daobilige-su/loam_velodyne 系统概述 LOAM的整体思想就是将复杂的SLAM问题分为:1. 高频的运动估计; 2. 低频的环境建图。 Lidar接收数据,首先进行Point Cloud Registration,Lidar Odometry以10Hz的频率进行运动估计和坐标转换,Lidar Mapping以1Hz的频率构建三维地图,Transform Integration完成位姿的优化。这样并行的结构保证了系统的实时性。 接下来是代码的框架图: 整个算法分为四个模块, 相对于其它直接匹配两个点云的算法,LOAM是通过提取特征点进行匹配之后计算坐标变换。具体流程为:ScanRegistration 提取特征点并排除瑕点; LaserOdometry从特征点中估计运动,然后整合数据发送给LaserMapping;LaserMapping输出的laser_cloud_surround为地图;TransformMaintenance订阅LaserOdometry与LaserMapping发布的Odometry消息,对位姿进行融合优化

optimize nearest neighbor query on 70 million extremely high density spatial point cloud on SQL Server 2008

柔情痞子 提交于 2019-12-02 06:28:55
问题 I have about 75 million records in a SQL Server 2008 R2 Express database. Each is a lat long corresponding to some value. The table has geography column. I am trying to find one nearest neighbor for a given latitude longitude (point). I already have a query with spatial index in place. But depending on where the record is in the database, say first quarter or last quarter, the query can take about from 3 to 30 seconds to find the nearest neighbor. I feel this can be optimized to give lot