乐观锁

何谓悲观锁、乐观锁?

こ雲淡風輕ζ 提交于 2019-12-18 05:00:54
乐观锁对应于生活中乐观的人总是想着事情往好的方向发展,悲观锁对应于生活中悲观的人总是想着事情往坏的方向发展。这两种人各有优缺点,不能不以场景而定说一种人好于另外一种人。 悲观锁 总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。 乐观锁 总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。 两种锁的使用场景 从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销

悲观锁与乐观锁

╄→гoц情女王★ 提交于 2019-12-17 20:14:44
一乐观锁 总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。 version方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。 核心SQL代码: update table set x=x+1, version=version+1 where id=#{id} and version=#{version}; CAS操作方式:即compare and swap 或者 compare and set,涉及到三个操作数,数据所在的内存值,预期值,新值。当需要更新时,判断当前内存值与之前取到的值是否相等,若相等,则用新值更新,若失败则重试,一般情况下是一个自旋操作,即不断的重试。 二悲观锁 总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中

MySQL事务隔离级别详解

与世无争的帅哥 提交于 2019-12-17 05:20:42
前两天面试,问到了四种隔离级别,当时觉得大多数数据库都为read committed,结果没想到mysql是个例外。在此做一下隔离级别和各种数据库锁的使用。 首先说一下ACID四大特性: 四大特性 · 原子性   事务必须是原子工作单元;对于其数据修改,要么全都执行,要么全都不执行。通常,与某个事务关联的操作具有共同的目标,并且是相互依赖的。如果系统只执行这些操作的一个子集,则可能会破坏事务的总体目标。原子性消除了系统处理操作子集的可能性。   · 一致性    事务在完成时,必须使所有的数据都保持一致状态。在相关数据库中,所有规则都必须应用于事务的修改,以保持所有数据的完整性。事务结束时,所有的内部 数据结构 (如 B 树索引或双向链表)都必须是正确的。某些维护一致性的责任由应用程序开发人员承担,他们必须确保应用程序已强制所有已知的完整性约束。例如,当开发用于转帐的应用程序时,应避免在转帐过程中任意移动小数点。   · 隔离性   由并发事务所作的修改必须与任何其它并发事务所作的修改隔离。事务查看数据时数据所处的状态,要么是另一并发事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看中间状态的数据。这称为可串行性,因为它能够重新装载起始数据,并且重播一系列事务,以使数据结束时的状态与原始事务执行的状态相同。当事务可序列化时将获得最高的隔离级别。在此级别上

MySQL事务隔离级别详解

落花浮王杯 提交于 2019-12-17 03:07:36
前两天面试,问到了四种隔离级别,当时觉得大多数数据库都为read committed,结果没想到mysql是个例外。在此做一下隔离级别和各种数据库锁的使用。 首先说一下ACID四大特性: 四大特性 · 原子性   事务必须是原子工作单元;对于其数据修改,要么全都执行,要么全都不执行。通常,与某个事务关联的操作具有共同的目标,并且是相互依赖的。如果系统只执行这些操作的一个子集,则可能会破坏事务的总体目标。原子性消除了系统处理操作子集的可能性。   · 一致性    事务在完成时,必须使所有的数据都保持一致状态。在相关数据库中,所有规则都必须应用于事务的修改,以保持所有数据的完整性。事务结束时,所有的内部 数据结构 (如 B 树索引或双向链表)都必须是正确的。某些维护一致性的责任由应用程序开发人员承担,他们必须确保应用程序已强制所有已知的完整性约束。例如,当开发用于转帐的应用程序时,应避免在转帐过程中任意移动小数点。   · 隔离性   由并发事务所作的修改必须与任何其它并发事务所作的修改隔离。事务查看数据时数据所处的状态,要么是另一并发事务修改它之前的状态,要么是另一事务修改它之后的状态,事务不会查看中间状态的数据。这称为可串行性,因为它能够重新装载起始数据,并且重播一系列事务,以使数据结束时的状态与原始事务执行的状态相同。当事务可序列化时将获得最高的隔离级别。在此级别上

java CAS 乐观锁

谁都会走 提交于 2019-12-16 01:24:58
本文讲解CAS机制,主要是因为最近准备面试题,发现这个问题在面试中出现的频率非常的高,因此把自己学习过程中的一些理解记录下来,希望能对大家也有帮助。 什么是悲观锁、乐观锁?在java语言里,总有一些名词看语义跟本不明白是啥玩意儿,也就总有部分面试官拿着这样的词来忽悠面试者,以此来找优越感,其实理解清楚了,这些词也就唬不住人了。 synchronized是悲观锁,这种线程一旦得到锁,其他需要锁的线程就挂起的情况就是悲观锁。 CAS操作的就是乐观锁,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。 在进入正题之前,我们先理解下下面的代码: private static int count = 0; public static void main(String[] args) { for (int i = 0; i < 2; i++) { new Thread(new Runnable() { @Override public void run() { try { Thread.sleep(10); } catch (Exception e) { e.printStackTrace(); } //每个线程让count自增100次 for (int i = 0; i < 100; i++) { count++; } } }).start(); } try{

悲观锁和乐观锁

拜拜、爱过 提交于 2019-12-13 21:17:03
何谓悲观锁与乐观锁 乐观锁对应于生活中乐观的人总是想着事情往好的方向发展,悲观锁对应于生活中悲观的人总是想着事情往坏的方向发展。这两种人各有优缺点,不能不以场景而定说一种人好于另外一种人。 悲观锁 总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。 乐观锁 总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。 两种锁的使用场景 从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候

Java:CAS(乐观锁)

梦想的初衷 提交于 2019-12-13 02:06:01
本文讲解CAS机制,主要是因为最近准备面试题,发现这个问题在面试中出现的频率非常的高,因此把自己学习过程中的一些理解记录下来,希望能对大家也有帮助。 什么是悲观锁、乐观锁?在java语言里,总有一些名词看语义跟本不明白是啥玩意儿,也就总有部分面试官拿着这样的词来忽悠面试者,以此来找优越感,其实理解清楚了,这些词也就唬不住人了。 synchronized是悲观锁,这种线程一旦得到锁,其他需要锁的线程就挂起的情况就是悲观锁。 CAS操作的就是乐观锁,每次不加锁而是假设没有冲突而去完成某项操作,如果因为冲突失败就重试,直到成功为止。 在进入正题之前,我们先理解下下面的代码: private static int count = 0; public static void main(String[] args) { for (int i = 0; i < 2; i++) { new Thread(new Runnable() { @Override public void run() { try { Thread.sleep(10); } catch (Exception e) { e.printStackTrace(); } //每个线程让count自增100次 for (int i = 0; i < 100; i++) { count++; } } }).start(); } try{

数据库乐观锁和悲观锁

喜欢而已 提交于 2019-12-13 00:12:33
转自:博客园 https://www.cnblogs.com/vianzhang/p/7922376.html 以下是转载的oracle和Mysql两种数据库悲观锁和乐观锁机制及乐观锁实现方式: 一、Oracle Oracle 数据库 悲观锁 与 乐观锁 是本文我们主要要介绍的内容。有时候为了得到最大的性能,一般数据库都有并发机制,不过带来的问题就是数据访问的冲突。为了解决这个问题,大多数数据库用的方法就是数据的锁定。 数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁。什么叫悲观锁呢,悲观锁顾名思义,就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住。而乐观锁就是认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让用户返回错误的信息,让用户决定如何去做。 先从悲观锁开始说。在SqlServer等其余很多数据库中,数据的锁定通常采用页级锁的方式,也就是说对一张表内的数据是一种串行化的更新插入机制,在任何时间同一张表只会插1条数据,别的想插入的数据要等到这一条数据插完以后才能依次插入。带来的后果就是性能的降低,在多用户并发访问的时候,当对一张表进行频繁操作时,会发现响应效率很低,数据库经常处于一种假死状态。而Oracle用的是行级锁,只是对想锁定的数据才进行锁定

悲观锁和乐观锁介绍

那年仲夏 提交于 2019-12-10 06:23:11
悲观锁 介绍 这里是引悲观锁表示一种悲观的状态,就是总是假设最坏的状态。每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁( 共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程 )。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中 synchronized 和 ReentrantLock 等独占锁就是悲观锁思想的实现。 乐观锁 介绍 总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。 乐观锁适用于多读的应用类型,这样可以提高吞吐量 ,像数据库提供的类似于 write_condition机制 ,其实都是提供的乐观锁。在Java中 java.util.concurrent.atomic 包下面的原子变量类就是使用了乐观锁的一种实现方式 CAS 实现的。 两种锁使用的场景 从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像 乐观锁适用于写比较少的情况下(多读场景) ,即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突

乐观锁介绍

与世无争的帅哥 提交于 2019-12-10 04:03:24
乐观锁( Optimistic Locking ) 相对 悲观锁 而言,乐观锁机制采取了更加宽松的加锁机制。悲观锁大多数情况下依靠数据库的锁机制实现,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长 事务 而言,这样的开销往往无法承受。而乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个 “version” 字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。 示例 如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户帐户余额),如果采用 悲观锁 机制,也就意味着整个操作过 程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作 员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对几百上千个并发,这样的情况将导致怎样的后果。 乐观锁机制在一定程度上解决了这个问题。乐观锁,大多是基于数据版本 ( Version )记录机制实现。何谓数据版本?即为数据增加一个版本标识