《微博深度学习平台架构和实践》---阅读
TensorFlow、Caffe和MXNet是三大主流的深度学习开源框架:TensorFlow的优势是社区最活跃,开源算法和模型最丰富;Caffe则是经典的图形领域框架,使用简单,在科研领域占有重要地位;MXNet在分布式性能上表现优异。PaddlePaddle、鲲鹏、Angel则是百度、阿里、腾讯分别推出的分布式计算框架。 腾讯深度学习平台DI-X:腾讯深度学习平台DI-X于2017年3月发布。DI-X基于腾讯云的大数据存储与处理能力来提供一站式的机器学习和深度学习服务。DI-X支持TensorFlow、Caffe以及Torch等三大深度学习框架,主要基于腾讯云的GPU计算平台。DI-X的设计理念是打造一个一站式的机器学习平台,集开发、调试、训练、预测、部署于一体, 让算法科学家和数据科学家,无须关注机器学习(尤其是深度学习)的底层工程繁琐的细节和资源,专注于模型和算法调优。 阿里机器学习平台PAI:阿里机器学习平台PAI1.0于2015年发布,包括数据处理以及基础的回归、分类、聚类算法。阿里机器学习平台PAI2.0于2017年3月发布,配备了更丰富的算法库、更大规模的数据训练和全面兼容开源的平台化产品。深度学习是阿里机器学习平台PAI2.0的重要功能,支持TensorFlow、Caffe、MXNet框架,这些框架与开源接口兼容。在数据源方面,PAI2.0支持非结构化